The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications †
Abstract
:1. Introduction
2. Kaolinite
3. Montmorillonite
4. Sepiolite
5. Halloysite Nanotubes
6. Conclusions
Funding
Conflicts of Interest
References
- Carretero, M.I. Clay Minerals and Their Beneficial Effects Upon Human Health: A Review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. General Introduction: Clays, Clay Minerals, and Clay Science. In Developments in Clay Science; Elsevier: Oxford, UK, 2006; Chapter 1; pp. 1–18. [Google Scholar]
- Carretero, M.I.; Pozo, M. Clay and Non-Clay Minerals in the Pharmaceutical Industry: Part I. Excipients and Medical Applications. Appl. Clay Sci. 2009, 46, 73–80. [Google Scholar] [CrossRef]
- López-Galindo, A.; Viseras, C.; Aguzzi, C.; Cerezo, P. Pharmaceutical and Cosmetic Uses of Fibrous Clays. In Developments in Clay Science; Elsevier: Oxford, UK, 2011; pp. 299–324. [Google Scholar]
- Carretero, M.I.; Gomes, C.S.F.; Tateo, F. Clays, Drugs, and Human Health. In Developments in Clay Science; Elsevier: Oxford, UK, 2013; pp. 711–764. [Google Scholar]
- Khurana, I.S.; Kaur, S.; Kaur, H.; Khurana, R.K. Multifaceted Role of Clay Minerals in Pharmaceuticals. Future Science OA 2015, 1. [Google Scholar] [CrossRef] [PubMed]
- Sposito, G.; Skipper, N.T.; Sutton, R.; Park, S.-h.; Soper, A.K.; Greathouse, J.A. Surface Geochemistry of the Clay Minerals. Proc. Natl. Acad. Sci. USA 1999, 96, 3358–3364. [Google Scholar] [CrossRef] [PubMed]
- Eslinger, E.; Pevear, D.R. Clay Minerals for Petroleum Geologists and Engineers; SEPM: Broken Arrow, OK, USA, 1988. [Google Scholar]
- Wang, S.; Du, P.; Yuan, P.; Zhong, X.; Liu, Y.; Liu, D.; Deng, L. Changes in the Structure and Porosity of Hollow Spherical Allophane under Alkaline Conditions. Appl. Clay Sci. 2018, 166, 242–249. [Google Scholar] [CrossRef]
- Toyota, Y.; Matsuura, Y.; Ito, M.; Domura, R.; Okamoto, M.; Arakawa, S.; Hirano, M.; Kohda, K. Cytotoxicity of Natural Allophane Nanoparticles on Human Lung Cancer A549 Cells. Appl. Clay Sci. 2017, 135, 485–492. [Google Scholar] [CrossRef]
- Toyota, Y.; Okamoto, M.; Arakawa, S. New Opportunities for Drug Delivery Carrier of Natural Allophane Nanoparticles on Human Lung Cancer A549 Cells. Appl. Clay Sci. 2017, 143, 422–429. [Google Scholar] [CrossRef]
- Yang, J.-H.; Lee, J.-H.; Ryu, H.-J.; Elzatahry, A.A.; Alothman, Z.A.; Choy, J.-H. Drug–Clay Nanohybrids as Sustained Delivery Systems. Appl. Clay Sci. 2016, 130, 20–32. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef] [PubMed]
- Yah, W.O.; Takahara, A.; Lvov, Y.M. Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid: New Inorganic Tubular Micelle. J. Am. Chem. Soc. 2012, 134, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Viseras, C.; Lopez-Galindo, A. Pharmaceutical Applications of Some Spanish Clays (Sepiolite, Palygorskite, Bentonite): Some Preformulation Studies. Appl. Clay Sci. 1999, 14, 69–82. [Google Scholar] [CrossRef]
- Viseras, C.; Cerezo, P.; Sanchez, R.; Salcedo, I.; Aguzzi, C. Current Challenges in Clay Minerals for Drug Delivery. Appl. Clay Sci. 2010, 48, 291–295. [Google Scholar] [CrossRef]
- Joekes, A.M.; Rose, G.A.; Sutor, J. Multiple Renal Silica Calculi. Br. Med. J. 1973, 1, 146–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levison, D.A.; Banim, S.; Crocker, P.R.; Wallace, D.M.A. Silica Stones in the Urinary Bladder. Lancet 1982, 319, 704–705. [Google Scholar] [CrossRef]
- Matlaga, B.R.; Shah, O.D.; Assimos, D.G. Drug-Induced Urinary Calculi. Rev. Urol. 2003, 5, 227–231. [Google Scholar] [PubMed]
- Leonard, A.; Droy-Lefaix, M.T.; Allen, A. Pepsin Hydrolysis of the Adherent Mucus Barrier and Subsequent Gastric Mucosal Damage in the Rat: Effect of Diosmectite and 16,16 Dimethyl Prostaglandin E2. Gastroenterol. Clin. Biol. 1994, 18, 609–616. [Google Scholar] [PubMed]
- Zhang, Y.; Long, M.; Huang, P.; Yang, H.; Chang, S.; Hu, Y.; Tang, A.; Mao, L. Intercalated 2d Nanoclay for Emerging Drug Delivery in Cancer Therapy. Nano Res. 2017, 10, 2633–2643. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, M.; Huang, P.; Yang, H.; Chang, S.; Hu, Y.; Tang, A.; Mao, L. Emerging Integrated Nanoclay-Facilitated Drug Delivery System for Papillary Thyroid Cancer Therapy. Sci. Rep. 2016, 6, 33335. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.E.; López-Galindo, A.; Setti, M.; El-Rahmany, M.M.; Iborra, C.V. Kaolinite in Pharmaceutics and Biomedicine. Int. J. Pharm. 2017, 533, 34–48. [Google Scholar] [CrossRef] [PubMed]
- NICE. Drug Reports (Thr 15670/0020), (Pl 14894/0297), (Pl: 21727/0018-23). Available online: http://www.evidence.nhs.uk/ (accessed on 12 September 2018).
- Stewart, A.G.; Grant, D.J.W.; Newton, J.M. The Release of a Model Low-Dose Drug (Riboflavine) from Hard Gelatin Capsule Formulations. J. Pharm. Pharmacol. 1979, 31, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Onyishi, V.I.; Chime, S.A.; Adibe, C.V. Formulation of Pyridoxine Hydrochloride Sustained Release Capsules: Effect of Propylene Glycol Co-Solvent on the in Vitro Release. Afr. J. Pharm. Pharmacol. 2013, 7, 809–815. [Google Scholar] [CrossRef]
- Khalil, S.A.H.; Mortada, L.M.; Sharms-eldeen, M.A.; El-khawas, M.M. The in-Vitro Uptake of a Low Dose Drug (Riboflavine) by Some Adsorbents. Drug Dev. Ind. Pharm. 1987, 13, 547–563. [Google Scholar] [CrossRef]
- Wai, K.-N.; DeKay, H.G.; Banker, G.S. Stability of Vitamins A, B1, and C in Selected Vehicle Matrices. J. Pharm. Sci. 1962, 51, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Ghebre-Sellassie, I.; Gordon, R.H.; Middleton, D.L.; Nesbitt, R.U.; Fawzi, M.B. A Unique Application and Characterization of Eudragit E 30 D Film Coatings in Sustained Release Formulations. Int. J. Pharm. 1986, 31, 43–54. [Google Scholar] [CrossRef]
- Nesbitt, R.U. Effect of Formulation Components on Drug Release from Multiparticulates. Drug Dev. Ind. Pharm. 1994, 20, 3207–3236. [Google Scholar] [CrossRef]
- Ward, J.B.; Trachtenberg, A. Evaluation of tablet disintegrants. Drug Cosmet. Ind. 1962, 91, 35. [Google Scholar]
- Kristensen, J.; Schæfer, T.; Kleinebudde, P. Development of Fast-Disintegrating Pellets in a Rotary Processor. Drug Dev. Ind. Pharm. 2002, 28, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Souto, C.; Martínez-Pacheco, R. Chitosan–Kaolin Coprecipitate as Disintegrant in Microcrystalline Cellulose-Based Pellets Elaborated by Extrusion–Spheronization. Pharm. Dev. Technol. 2013, 18, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Law, M.F.L.; Deasy, P.B. Effect of Common Classes of Excipients on Extrusion-Spheronization. J. Microencapsul. 1997, 14, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Deasy, P.B.; Gouldson, M.P. In Vitro Evaluation of Pellets Containing Enteric Coprecipitates of Nifedipine Formed by Non-Aqueous Spheronization. Int. J. Pharm. 1996, 132, 131–141. [Google Scholar] [CrossRef]
- Travers, D.N. A Comparison of Solute Migration in a Test Granulation Dried by Fluidization and Other Methods. J. Pharm. Pharmacol. 1975, 27, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.H.L.; Leung, M.W.M. A Study of the Mechanisms of Wet Spherical Agglomeration of Pharmaceutical Powders. Drug Dev. Ind. Pharm. 1996, 22, 357–371. [Google Scholar] [CrossRef]
- Mallick, S.; Pattnaik, S.; Swain, K.; De, P.K. Current Perspectives of Solubilization: Potential for Improved Bioavailability. Drug Dev. Ind. Pharm. 2007, 33, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Ghebre-Sellassie, I.; Gordon, R.H.; Nesbitt, R.U.; Fawzi, M.B. Evaluation of Acrylic-Based Modified-Release Film Coatings. Int. J. Pharm. 1987, 37, 211–218. [Google Scholar] [CrossRef]
- Zoglio, M.A.; Maulding, H.V.; Carstensen, J.T. Linearization of Drug Delivery from Sustained-Release Dosage Forms, Synthetic Gel Systems. Drug Dev. Ind. Pharm. 1996, 22, 431–437. [Google Scholar] [CrossRef]
- Kpogbemabou, D.; Lecomte-Nana, G.; Aimable, A.; Bienia, M.; Niknam, V.; Carrion, C. Oil-in-Water Pickering Emulsions Stabilized by Phyllosilicates at High Solid Content. Colloids Surf. Physicochem. Eng. Asp. 2014, 463, 85–92. [Google Scholar] [CrossRef]
- Tawfeek, A.M.; Dyab, A.K.F.; Al-Lohedan, H.A. Synergetic Effect of Reactive Surfactants and Clay Particles on Stabilization of Nonaqueous Oil-in-Oil (O/O) Emulsions. J. Dispers. Sci. Technol. 2014, 35, 265–272. [Google Scholar] [CrossRef]
- Delgado, R.; Delgado, G.; Ruiz, A.; Gallardo, V.; Gamiz, E. The Crystallinity of Several Spanish Kaolins: Correlation with Sodium Amylobarbitone Release. Clay Miner. 2018, 29, 785–797. [Google Scholar]
- Byrne, R.S.; Deasy, P.B. Use of Porous Aluminosilicate Pellets for Drug Delivery. J. Microencapsul. 2005, 22, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Jämstorp, E.; Yarra, T.; Cai, B.; Engqvist, H.; Bredenberg, S.; Strømme, M. Polymer Excipients Enable Sustained Drug Release in Low Ph from Mechanically Strong Inorganic Geopolymers. Results Pharma Sci. 2012, 2, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Yuan, P.; Annabi-Bergaya, F.; Liu, D.; He, H. Methoxy-Modified Kaolinite as a Novel Carrier for High-Capacity Loading and Controlled-Release of the Herbicide Amitrole. Sci. Rep. 2015, 5, 8870. [Google Scholar] [CrossRef] [PubMed]
- Syngouna, V.I.; Chrysikopoulos, C.V. Experimental Investigation of Virus and Clay Particles Cotransport in Partially Saturated Columns Packed with Glass Beads. J. Colloid Interface Sci. 2015, 440, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Silva, R.; Villa-García, M.A.; Rendueles, M.; Díaz, M. Structural, Textural and Protein Adsorption Properties of Kaolinite and Surface Modified Kaolinite Adsorbents. Appl. Clay Sci. 2014, 90, 73–80. [Google Scholar] [CrossRef]
- Long, M.; Zhang, Y.; Huang, P.; Chang, S.; Hu, Y.; Yang, Q.; Mao, L.; Yang, H. Emerging Nanoclay Composite for Effective Hemostasis. Adv. Funct. Mater. 2018, 28, 1704452. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, C.; Li, G.; Liu, T.; Liang, J.F.; Wang, X. Graphene-Kaolin Composite Sponge for Rapid and Riskless Hemostasis. Colloids Surf. B. Biointerfaces 2018, 169, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Shi, Y.; Wang, X.; Rasmussen, J.; Li, Z.; Zhu, J. Organokaolin for the Uptake of Pharmaceuticals Diclofenac and Chloramphenicol from Water. Chem. Eng. J. 2017, 330, 1128–1136. [Google Scholar] [CrossRef]
- Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of Clays as Drug Delivery Systems: Possibilities and Limitations. Appl. Clay Sci. 2007, 36, 22–36. [Google Scholar] [CrossRef]
- Park, J.-H.; Shin, H.-J.; Kim, M.H.; Kim, J.-S.; Kang, N.; Lee, J.-Y.; Kim, K.-T.; Lee, J.I.; Kim, D.-D. Application of Montmorillonite in Bentonite as a Pharmaceutical Excipient in Drug Delivery Systems. J. Pharm. Investig. 2016, 46, 363–375. [Google Scholar] [CrossRef]
- Aguzzi, C.; Caramella, C.; Cerezo, P.; Ferrari, F.; López-Galindo, A.; Rossi, S.; Viseras, C. Influence of Dispersion Conditions of Two Pharmaceutical Grade Clays on Their Interaction with Some Tetracyclines. Appl. Clay Sci. 2005, 30, 79–86. [Google Scholar] [CrossRef]
- Bello, M.L.; Junior, A.M.; Vieira, B.A.; Dias, L.R.S.; de Sousa, V.P.; Castro, H.C.; Rodrigues, C.R.; Cabral, L.M. Sodium Montmorillonite/Amine-Containing Drugs Complexes: New Insights on Intercalated Drugs Arrangement into Layered Carrier Material. PLoS ONE 2015, 10, e0121110. [Google Scholar] [CrossRef] [PubMed]
- Bonina, F.P.; Giannossi, M.L.; Medici, L.; Puglia, C.; Summa, V.; Tateo, F. Adsorption of Salicylic Acid on Bentonite and Kaolin and Release Experiments. Appl. Clay Sci. 2007, 36, 77–85. [Google Scholar] [CrossRef]
- de Paiva, L.B.; Morales, A.R.; Valenzuela Díaz, F.R. Organoclays: Properties, Preparation and Applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- Forni, F.; Iannuccelli, V.; Coppi, G.; Vandelli, M.A.; Cameroni, R. Montmorillonite as a Drug Carrier: Surface Deposition of Papaverine on the Papaverine-Veegum Complex. Boll. Chim. Farm. 1987, 126, 342–346. [Google Scholar] [PubMed]
- Iannuccelli, V.; Maretti, E.; Montorsi, M.; Rustichelli, C.; Sacchetti, F.; Leo, E. Gastroretentive Montmorillonite-Tetracycline Nanoclay for the Treatment of Helicobacter Pylori Infection. Int. J. Pharm. 2015, 493, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Iliescu, R.I.; Andronescu, E.; Voicu, G.; Ficai, A.; Covaliu, C.I. Hybrid Materials Based on Montmorillonite and Citostatic Drugs: Preparation and Characterization. Appl. Clay Sci. 2011, 52, 62–68. [Google Scholar] [CrossRef]
- Joshi, G.V.; Kevadiya, B.D.; Patel, H.A.; Bajaj, H.C.; Jasra, R.V. Montmorillonite as a Drug Delivery System: Intercalation and in Vitro Release of Timolol Maleate. Int. J. Pharm. 2009, 374, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.; Datta, M. Organo Montmorillonite as Drug Delivery Vehicle for the Extended Release of an Antibiotic Drug. World J. Pharm. Res. 2016, 6, 574–586. [Google Scholar]
- Katti, K.S.; Ambre, A.H.; Peterka, N.; Katti, D.R. Use of Unnatural Amino Acids for Design of Novel Organomodified Clays as Components of Nanocomposite Biomaterials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1963–1980. [Google Scholar] [CrossRef] [PubMed]
- Hun Kim, M.; Choi, G.; Elzatahry, A.; Vinu, A.; Bin Choy, Y.; Choy, J.-H. Review of Clay-Drug Hybrid Materials for Biomedical Applications: Administration Routes. Clays Clay Miner. 2016, 64, 115–130. [Google Scholar] [CrossRef]
- Mohamed, W.S.; Mostafa, A.B.; Nasr, H.E. Characterization and Application of Intercalated Montmorillonite with Verapamil and Its Polymethyl Methacrylate Nanocomposite in Drug Delivery. Polym.-Plast. Technol. Eng. 2014, 53, 1425–1433. [Google Scholar] [CrossRef]
- Rapacz-Kmita, A.; Stodolak-Zych, E.; Ziabka, M.; Rozyka, A.; Dudek, M. Instrumental Characterization of the Smectite Clay–Gentamicin Hybrids. Bull. Mater. Sci. 2015, 38, 1069–1078. [Google Scholar] [CrossRef]
- López-Galindo, A.; Viseras, C.; Cerezo, P. Compositional, Technical and Safety Specifications of Clays to Be Used as Pharmaceutical and Cosmetic Products. Appl. Clay Sci. 2007, 36, 51–63. [Google Scholar] [CrossRef]
- Iannuccelli, V.; Maretti, E.; Bellini, A.; Malferrari, D.; Ori, G.; Montorsi, M.; Bondi, M.; Truzzi, E.; Leo, E. Organo-Modified Bentonite for Gentamicin Topical Application: Interlayer Structure and in Vivo Skin Permeation. Appl. Clay Sci. 2018, 158, 158–168. [Google Scholar] [CrossRef]
- Calabrese, I.; Cavallaro, G.; Scialabba, C.; Licciardi, M.; Merli, M.; Sciascia, L.; Turco Liveri, M.L. Montmorillonite Nanodevices for the Colon Metronidazole Delivery. Int. J. Pharm. 2013, 457, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Sánchez, A.; Carazo, E.; Aguzzi, C.; Viseras, C.; Sainz-Díaz, C.I. Biopharmaceutical Improvement of Praziquantel by Interaction with Montmorillonite and Sepiolite. Appl. Clay Sci. 2018, 160, 173–179. [Google Scholar] [CrossRef]
- Djebbi, M.A.; Boubakri, S.; Bouaziz, Z.; Elayachi, M.S.; Namour, P.; Jaffrezic-Renault, N.; Ben Haj Amara, A. Extended-Release of Chlorpromazine Intercalated into Montmorillonite Clays. Microporous Mesoporous Mater. 2018, 267, 43–52. [Google Scholar] [CrossRef]
- Calabrese, I.; Gelardi, G.; Merli, M.; Liveri, M.L.T.; Sciascia, L. Clay-Biosurfactant Materials as Functional Drug Delivery Systems: Slowing Down Effect in the in Vitro Release of Cinnamic Acid. Appl. Clay Sci. 2017, 135, 567–574. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Parvathy, J. Novel Thiolated Chitosan–Polyethyleneglycol Blend/Montmorillonite Composite Formulations for the Oral Delivery of Insulin. Bioact. Carbohydr. Diet. Fibre 2018, in press. [Google Scholar] [CrossRef]
- Rebitski, E.P.; Aranda, P.; Darder, M.; Carraro, R.; Ruiz-Hitzky, E. Intercalation of Metformin into Montmorillonite. Dalton Trans. 2018, 47, 3185–3192. [Google Scholar] [CrossRef] [PubMed]
- Karataş, D.; Tekin, A.; Bahadori, F.; Çelik, M.S. Interaction of Curcumin in a Drug Delivery System Including a Composite with Poly(Lactic-Co-Glycolic Acid) and Montmorillonite: A Density Functional Theory and Molecular Dynamics Study. J. Mater. Chem. B 2017, 5, 8070–8082. [Google Scholar] [CrossRef]
- Golbashy, M.; Sabahi, H.; Allahdadi, I.; Nazokdast, H.; Hosseini, M. Synthesis of Highly Intercalated Urea-Clay Nanocomposite Via Domestic Montmorillonite as Eco-Friendly Slow-Release Fertilizer. Arch. Agron. Soil Sci. 2017, 63, 84–95. [Google Scholar] [CrossRef]
- Pereira, E.I.; Minussi, F.B.; da Cruz, C.C.T.; Bernardi, A.C.C.; Ribeiro, C. Urea–Montmorillonite-Extruded Nanocomposites: A Novel Slow-Release Material. J. Agric. Food Chem. 2012, 60, 5267–5272. [Google Scholar] [CrossRef] [PubMed]
- Wanyika, H. Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space. Sci. World J. 2014, 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Tabuani, D.; Camino, G. Nanocomposites of Pla and Pcl Based on Montmorillonite and Sepiolite. Mater. Sci. Eng. C 2009, 29, 1433–1441. [Google Scholar] [CrossRef]
- Tartaglione, G.; Tabuani, D.; Camino, G. Thermal and Morphological Characterisation of Organically Modified Sepiolite. Microporous Mesoporous Mater. 2008, 107, 161–168. [Google Scholar] [CrossRef]
- Lazarević, S.; Janković-Častvan, I.; Jovanović, D.; Milonjić, S.; Janaćković, D.; Petrović, R. Adsorption of Pb2+, Cd2+ and Sr2+ Ions onto Natural and Acid-Activated Sepiolites. Appl. Clay Sci. 2007, 37, 47–57. [Google Scholar] [CrossRef]
- Yu, Y.; Qi, S.; Zhan, J.; Wu, Z.; Yang, X.; Wu, D. Polyimide/Sepiolite Nanocomposite Films: Preparation, Morphology and Properties. Mater. Res. Bull. 2011, 46, 1593–1599. [Google Scholar] [CrossRef]
- Calabrese, I.; Turco Liveri, M.L.; Ferreira, M.J.; Bento, A.; Vaz, P.D.; Calhorda, M.J.; Nunes, C.D. Porous Materials as Delivery and Protective Agents for Vitamin A. RSC Adv. 2016, 6, 66495–66504. [Google Scholar] [CrossRef]
- Giménez, B.; Gómez-Guillén, M.C.; López-Caballero, M.E.; Gómez-Estaca, J.; Montero, P. Role of Sepiolite in the Release of Active Compounds from Gelatin–Egg White Films. Food Hydrocoll. 2012, 27, 475–486. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Hosseini, R.; Darvishi, F.; Sabzi, M. The Release of Cefazolin from Chitosan/Polyvinyl Alcohol/Sepiolite Nanocomposite Hydrogel Films. Iran.Polym. J. 2016, 25, 933–943. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Antunes, F.; Pires, J. Sepiolite Based Materials for Storage and Slow Release of Nitric Oxide. New J. Chem. 2013, 37, 4052–4060. [Google Scholar] [CrossRef]
- Castro-Smirnov, F.A.; Piétrement, O.; Aranda, P.; Bertrand, J.-R.; Ayache, J.; Le Cam, E.; Ruiz-Hitzky, E.; Lopez, B.S. Physical Interactions between DNA and Sepiolite Nanofibers, and Potential Application for DNA Transfer into Mammalian Cells. Sci. Rep. 2016, 6, 36341. [Google Scholar] [CrossRef] [PubMed]
- Castro-Smirnov, F.A.; Ayache, J.; Bertrand, J.-R.; Dardillac, E.; Le Cam, E.; Piétrement, O.; Aranda, P.; Ruiz-Hitzky, E.; Lopez, B.S. Cellular Uptake Pathways of Sepiolite Nanofibers and DNA Transfection Improvement. Sci. Rep. 2017, 7, 5586. [Google Scholar] [CrossRef] [PubMed]
- Massaro, M.; Cavallaro, G.; Colletti, C.G.; Lazzara, G.; Milioto, S.; Noto, R.; Riela, S. Chemical Modification of Halloysite Nanotubes for Controlled Loading and Release. J. Mater. Chem. B 2018, 6, 3415–3433. [Google Scholar] [CrossRef]
- Massaro, M.; Colletti, C.G.; Lazzara, G.; Milioto, S.; Noto, R.; Riela, S. Halloysite Nanotubes as Support for Metal-Based Catalysts. J. Mater. Chem. A 2017, 5, 13276–13293. [Google Scholar] [CrossRef]
- Massaro, M.; Lazzara, G.; Milioto, S.; Noto, R.; Riela, S. Covalently Modified Halloysite Clay Nanotubes: Synthesis, Properties, Biological and Medical Applications. J. Mater. Chem. B 2017, 5, 2867–2882. [Google Scholar] [CrossRef]
- Veerabadran, N.G.; Price, R.R.; Lvov, Y.M. Clay Nanotubes for Encapsulation and Sustained Release of Drugs. Nano 2007, 02, 115–120. [Google Scholar] [CrossRef]
- Bretti, C.; Cataldo, S.; Gianguzza, A.; Lando, G.; Lazzara, G.; Pettignano, A.; Sammartano, S. Thermodynamics of Proton Binding of Halloysite Nanotubes. J. Phys. Chem. C 2016, 120, 7849–7859. [Google Scholar] [CrossRef]
- Konnova, S.A.; Sharipova, I.R.; Demina, T.A.; Osin, Y.N.; Yarullina, D.R.; Ilinskaya, O.N.; Lvov, Y.M.; Fakhrullin, R.F. Biomimetic Cell-Mediated Three-Dimensional Assembly of Halloysite Nanotubes. Chem. Commun. 2013, 49, 4208–4210. [Google Scholar] [CrossRef] [PubMed]
- Abdullayev, E.; Abbasov, V.; Tursunbayeva, A.; Portnov, V.; Ibrahimov, H.; Mukhtarova, G.; Lvov, Y. Self-Healing Coatings Based on Halloysite Clay Polymer Composites for Protection of Copper Alloys. ACS Appl. Mater. Interfaces 2013, 5, 4464–4471. [Google Scholar] [CrossRef] [PubMed]
- Abdullayev, E.; Lvov, Y. Halloysite Clay Nanotubes as a Ceramic “Skeleton” for Functional Biopolymer Composites with Sustained Drug Release. J. Mater. Chem. B 2013, 1, 2894–2903. [Google Scholar] [CrossRef]
- Price, R.; Gaber, B.P.; Lvov, Y.; Price, R. In-Vitro Release Characteristics of Tetracycline Hcl, Khellin and Nicotinamide Adenine Dineculeotide from Halloysite; a Cylindrical Mineral. J. Microencapsul. 2001, 18, 713–722. [Google Scholar] [PubMed]
- Cavallaro, G.; Lazzara, G.; Milioto, S. Exploiting the Colloidal Stability and Solubilization Ability of Clay Nanotubes/Ionic Surfactant Hybrid Nanomaterials. J. Phys. Chem. C 2012, 116, 21932–21938. [Google Scholar] [CrossRef]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Palmisano, G.; Parisi, F. Halloysite Nanotube with Fluorinated Lumen: Non-Foaming Nanocontainer for Storage and Controlled Release of Oxygen in Aqueous Media. J. Colloid Interface Sci. 2014, 417, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Sanzillo, V. Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS Appl. Mater. Interfaces 2014, 6, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Yendluri, R.; Liu, K.; Guo, Y.; Lvov, Y.; Yan, X. Enzyme-Immobilized Clay Nanotube-Chitosan Membranes with Sustainable Biocatalytic Activities. Phys. Chem. Chem. Phys. 2017, 19, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Tully, J.; Yendluri, R.; Lvov, Y. Halloysite Clay Nanotubes for Enzyme Immobilization. Biomacromolecules 2016, 17, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Biddeci, G.; Cavallaro, G.; Di Blasi, F.; Lazzara, G.; Massaro, M.; Milioto, S.; Parisi, F.; Riela, S.; Spinelli, G. Halloysite Nanotubes Loaded with Peppermint Essential Oil as Filler for Functional Biopolymer Film. Carbohydr. Polym. 2016, 152, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Massaro, M.; Riela, S.; Cavallaro, G.; Colletti, C.G.; Milioto, S.; Noto, R.; Lazzara, G. Ecocompatible Halloysite/Cucurbit[8]Uril Hybrid as Efficient Nanosponge for Pollutants Removal. ChemistrySelect 2016, 1, 1773–1779. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, S.; Gupta, P.K.; Singh, A.; Teja, B.V.; Dwivedi, P.; Gupta, G.K.; Trivedi, R.; Mishra, P.R. Vitamin B12 Functionalized Layer by Layer Calcium Phosphate Nanoparticles: A Mucoadhesive and Ph Responsive Carrier for Improved Oral Delivery of Insulin. Acta Biomater. 2016, 31, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Massaro, M.; Cavallaro, G.; Colletti, C.G.; D’Azzo, G.; Guernelli, S.; Lazzara, G.; Pieraccini, S.; Riela, S. Halloysite Nanotubes for Efficient Loading, Stabilization and Controlled Release of Insulin. J. Colloid Interface Sci. 2018, 524, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Dzamukova, M.R.; Naumenko, E.A.; Lvov, Y.M.; Fakhrullin, R.F. Enzyme-Activated Intracellular Drug Delivery with Tubule Clay Nanoformulation. Sci. Rep. 2015, 5, 10560. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, L.; Spepi, A.; Agnolucci, M.; Cristani, C.; Giovannetti, M.; Tiné, M.R.; Duce, C. Kinetics of Release and Antibacterial Activity of Salicylic Acid Loaded into Halloysite Nanotubes. Appl. Clay Sci. 2018, 160, 88–94. [Google Scholar] [CrossRef]
- Tan, D.; Yuan, P.; Annabi-Bergaya, F.; Liu, D.; Wang, L.; Liu, H.; He, H. Loading and in Vitro Release of Ibuprofen in Tubular Halloysite. Appl. Clay Sci. 2014, 96, 50–55. [Google Scholar] [CrossRef]
- Massaro, M.; Colletti, C.G.; Guernelli, S.; Lazzara, G.; Liu, M.; Nicotra, G.; Noto, R.; Parisi, F.; Pibiri, I.; Spinella, C.; et al. Photoluminescent Hybrid Nanomaterials from Modified Halloysite Nanotubes. J. Mater. Chem. C 2018, 6, 7377–7384. [Google Scholar] [CrossRef]
- Kumar-Krishnan, S.; Hernandez-Rangel, A.; Pal, U.; Ceballos-Sanchez, O.; Flores-Ruiz, F.J.; Prokhorov, E.; Arias de Fuentes, O.; Esparza, R.; Meyyappan, M. Surface Functionalized Halloysite Nanotubes Decorated with Silver Nanoparticles for Enzyme Immobilization and Biosensing. J. Mater. Chem. B 2016, 4, 2553–2560. [Google Scholar] [CrossRef]
- Goran, J.M.; Mantilla, S.M.; Stevenson, K.J. Influence of Surface Adsorption on the Interfacial Electron Transfer of Flavin Adenine Dinucleotide and Glucose Oxidase at Carbon Nanotube and Nitrogen-Doped Carbon Nanotube Electrodes. Anal. Chem. 2013, 85, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Yuan, P.; Annabi-Bergaya, F.; Yu, H.; Liu, D.; Liu, H.; He, H. Natural Halloysite Nanotubes as Mesoporous Carriers for the Loading of Ibuprofen. Microporous Mesoporous Mater. 2013, 179, 89–98. [Google Scholar] [CrossRef]
- Lun, H.; Ouyang, J.; Yang, H. Natural Halloysite Nanotubes Modified as an Aspirin Carrier. RSC Adv. 2014, 4, 44197–44202. [Google Scholar] [CrossRef]
- Massaro, M.; Campofelice, A.; Colletti, C.G.; Lazzara, G.; Noto, R.; Riela, S. Functionalized Halloysite Nanotubes: Efficient Carrier Systems for Antifungine Drugs. Appl. Clay Sci. 2018, 160, 186–192. [Google Scholar] [CrossRef]
- Massaro, M.; Colletti, C.G.; Lazzara, G.; Guernelli, S.; Noto, R.; Riela, S. Synthesis and Characterization of Halloysite–Cyclodextrin Nanosponges for Enhanced Dyes Adsorption. ACS Sustain. Chem. Eng. 2017, 5, 3346–3352. [Google Scholar] [CrossRef] [Green Version]
- Massaro, M.; Piana, S.; Colletti, C.G.; Noto, R.; Riela, S.; Baiamonte, C.; Giordano, C.; Pizzolanti, G.; Cavallaro, G.; Milioto, S.; et al. Multicavity Halloysite-Amphiphilic Cyclodextrin Hybrids for Co-Delivery of Natural Drugs into Thyroid Cancer Cells. J. Mater. Chem. B 2015, 3, 4074–4081. [Google Scholar] [CrossRef] [Green Version]
- Massaro, M.; Riela, S.; Baiamonte, C.; Blanco, J.L.J.; Giordano, C.; Lo Meo, P.; Milioto, S.; Noto, R.; Parisi, F.; Pizzolanti, G.; et al. Dual Drug-Loaded Halloysite Hybrid-Based Glycocluster for Sustained Release of Hydrophobic Molecules. RSC Adv. 2016, 6, 87935–87944. [Google Scholar] [CrossRef]
- Massaro, M.; Riela, S.; Lo Meo, P.; Noto, R.; Cavallaro, G.; Milioto, S.; Lazzara, G. Functionalized Halloysite Multivalent Glycocluster as a New Drug Delivery System. J. Mater. Chem. B 2014, 2, 7732–7738. [Google Scholar] [CrossRef]
- Cavallaro, G.; Lazzara, G.; Massaro, M.; Milioto, S.; Noto, R.; Parisi, F.; Riela, S. Biocompatible Poly(N -Isopropylacrylamide)-Halloysite Nanotubes for Thermoresponsive Curcumin Release. J. Phys. Chem. C 2015, 119, 8944–8951. [Google Scholar] [CrossRef]
- Massaro, M.; Amorati, R.; Cavallaro, G.; Guernelli, S.; Lazzara, G.; Milioto, S.; Noto, R.; Poma, P.; Riela, S. Direct Chemical Grafted Curcumin on Halloysite Nanotubes as Dual-Responsive Prodrug for Pharmacological Applications. Colloids Surf. B. Biointerfaces 2016, 140, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Massaro, M.; Colletti, C.G.; Noto, R.; Riela, S.; Poma, P.; Guernelli, S.; Parisi, F.; Milioto, S.; Lazzara, G. Pharmaceutical Properties of Supramolecular Assembly of Co-Loaded Cardanol/Triazole-Halloysite Systems. Int. J. Pharm. 2015, 478, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Riela, S.; Massaro, M.; Colletti, C.G.; Bommarito, A.; Giordano, C.; Milioto, S.; Noto, R.; Poma, P.; Lazzara, G. Development and Characterization of Co-Loaded Curcumin/Triazole-Halloysite Systems and Evaluation of Their Potential Anticancer Activity. Int. J. Pharm. 2014, 475, 613–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamina, A.M.; Fizir, M.; Itatahine, A.; He, H.; Dramou, P. Preparation of Multifunctional Peg-Graft-Halloysite Nanotubes for Controlled Drug Release, Tumor Cell Targeting, and Bio-Imaging. Colloids Surf. B. Biointerfaces 2018, 170, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-P.; Yang, J.; Gao, H.-Y.; Shen, Y.; Jiang, L.; Zhou, C.; Li, Y.-F.; He, R.-R.; Liu, M. Folate-Conjugated Halloysite Nanotubes, an Efficient Drug Carrier, Deliver Doxorubicin for Targeted Therapy of Breast Cancer. ACS Appl. Nano Mater. 2018, 1, 595–608. [Google Scholar] [CrossRef]
- Liu, M.; Chang, Y.; Yang, J.; You, Y.; He, R.; Chen, T.; Zhou, C. Functionalized Halloysite Nanotube by Chitosan Grafting for Drug Delivery of Curcumin to Achieve Enhanced Anticancer Efficacy. J. Mater. Chem. B 2016, 4, 2253–2263. [Google Scholar] [CrossRef]
- Yang, J.; Wu, Y.; Shen, Y.; Zhou, C.; Li, Y.-F.; He, R.-R.; Liu, M. Enhanced Therapeutic Efficacy of Doxorubicin for Breast Cancer Using Chitosan Oligosaccharide-Modified Halloysite Nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 26578–26590. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, J.; Wang, A. In Situ Generation of Sodium Alginate/Hydroxyapatite/Halloysite Nanotubes Nanocomposite Hydrogel Beads as Drug-Controlled Release Matrices. J. Mater. Chem. B 2013, 1, 6261–6270. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Mu, B.; Fan, L.; Wang, A. Facile Preparation of Magnetic 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan/Fe3O4/Halloysite Nanotubes Microspheres for the Controlled Release of Ofloxacin. Carbohydr. Polym. 2014, 102, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, C.; Arrigo, R.; D’Anna, F.; Di Blasi, F.; Dintcheva, N.T.; Lazzara, G.; Parisi, F.; Riela, S.; Spinelli, G.; Massaro, M. Hybrid Supramolecular Gels of Fmoc-F/Halloysite Nanotubes: Systems for Sustained Release of Camptothecin. J. Mater. Chem. B 2017, 5, 3217–3229. [Google Scholar] [CrossRef]
- Dramou, P.; Fizir, M.; Taleb, A.; Itatahine, A.; Dahiru, N.S.; Mehdi, Y.A.; Wei, L.; Zhang, J.; He, H. Folic Acid-Conjugated Chitosan Oligosaccharide-Magnetic Halloysite Nanotubes as a Delivery System for Camptothecin. Carbohydr. Polym. 2018, 197, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Kryuchkova, M.; Danilushkina, A.A.; Lvov, Y.M.; Fakhrullin, R.F. Evaluation of Toxicity of Nanoclays and Graphene Oxide in Vivo: A Paramecium Caudatum Study. Environ. Sci. Nano 2016, 3, 442–452. [Google Scholar] [CrossRef]
- Lvov, Y.; Aerov, A.; Fakhrullin, R. Clay Nanotube Encapsulation for Functional Biocomposites. Adv. Colloid Interface Sci. 2014, 207, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Fakhrullina, G.I.; Akhatova, F.S.; Lvov, Y.M.; Fakhrullin, R.F. Toxicity of Halloysite Clay Nanotubes in Vivo: A Caenorhabditis Elegans Study. Environ. Sci. Nano 2015, 2, 54–59. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, R.; Liu, M.; Yan, C.; Shan, A. Adsorption of Modified Halloysite Nanotubes in Vitro and the Protective Effect in Rats Exposed to Zearalenone. Arch. Anim. Nutr. 2014, 68, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.R.; Shoaib, M.H.; Azhar, M.; Um, S.H.; Yousuf, R.I.; Hashmi, S.; Dar, A. In-Vitro Assessment of Cytotoxicity of Halloysite Nanotubes against Hepg2, Hct116 and Human Peripheral Blood Lymphocytes. Colloids Surf. B. Biointerfaces 2015, 135, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gong, J.; Gui, Z.; Hu, T.; Xu, X. Halloysite Nanotubes-Induced Al Accumulation and Oxidative Damage in Liver of Mice after 30-Day Repeated Oral Administration. Environ. Toxicol. 2018, 33, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Bellani, L.; Giorgetti, L.; Riela, S.; Lazzara, G.; Scialabba, A.; Massaro, M. Ecotoxicity of Halloysite Nanotube–Supported Palladium Nanoparticles in Raphanus sativus L. Environ. Toxicol. Chem. 2016, 35, 2503–2510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Excipient Functionality | Kaolin Grade/Composites | Commercial/Excipient Dosage Form | References |
---|---|---|---|
Diluent | Light a and heavy b kaolin Heavy kaolin | Herbal slimming tablet: products (Slimwell® and Quantrim®). Gastro-resistant tablets: Mecysteine Hydrochloride® 100 mg. Granules for oral suspension: Riclasip® and Co-amoxiclav DST Grünenthal®. Riboflavin (vitamin B2) hard gelatin capsules. Pyridoxine hydrochloride (vitamin B6) kaolin capsules. Thiamine (vitamin B1) and ascorbic acid (vitamin C) tablets and capsules. | [24,25,26,27,28] |
Binder | Kaolin/Eudragit® E30D mixture | Tablets and capsules | [29,30] |
Disintegrant | Heavy kaolin | Tablets and pellets | [31,32,33] |
Granulating agent | Heavy kaolin Light kaolin | Granules: (10% sodium chloride). Granules: (20% calcium chloride, with polyethylene glycol and polyvinyl alcohol). | [32,33,34,35] |
Pelletizing agent | Chitosan/kaolin Heavy kaolin | Microcrystalline cellulose and hydrochlorothiazide (HCT) pellets. Pellets (5% sodium lauryl sulfate) of size range (850–1180 μm). Pellets (25% kaolin and 5% crospovidone). Pellets (kaolin with microcrystalline cellulose and lactose). Pellets (45% kaolin, 5% aerosil® 200, 39.5% lactose, 2.5% liquid paraffin and 8% hydroxypropylmethylcellulose phthalate). | [36,37] |
Amorphizing agent | Light kaolin | kaolin-ibuprofen solid dosage forms. | [38] |
Film-coating additive | Koallicoat IR system and Kaolin/Eudragit® E30D dispersion | - Hypericon® and Metformin® tablets. - Pseudoephedrine hydrochloride, theophylline, and diphenhydramine hydrochloride pellets. - Dyphylline® coated tablets. | [39,40] |
Wetting and emulsifying agent | Light kaolin | Sulfur ointment. Oil-in-water Pickering emulsions. Non-aqueous oil-in-oil emulsions. | [41,42] |
Suspending and anticaking agent | Heavy kaolin | Toxiban®, Kaolin-Pectin®, Kapect®, Kaolin, and Morphine mixture BP® suspensions. | |
Drug carrier | Heavy kaolin and light kaolin Light kaolin Metakaolin Methoxy-modified kaolinite Kaolin and metakaolin | Kaolin powder (high and low kaolinite crystallinity) loaded by sodium amylobarbitone. Porous kaolin-based pellets loaded by Diltiazem HCl. Pellets loaded by highly potent opioids. The derivative powder loaded by anticancer 5-fluorouracil drug and herbicide amitrole. Powder loaded by α-lactalbumin, bovine serum albumin and β-lactoglobulin protein. | [43,44,45,46,47,48] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massaro, M.; Colletti, C.G.; Lazzara, G.; Riela, S. The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications. J. Funct. Biomater. 2018, 9, 58. https://doi.org/10.3390/jfb9040058
Massaro M, Colletti CG, Lazzara G, Riela S. The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications. Journal of Functional Biomaterials. 2018; 9(4):58. https://doi.org/10.3390/jfb9040058
Chicago/Turabian StyleMassaro, Marina, Carmelo Giuseppe Colletti, Giuseppe Lazzara, and Serena Riela. 2018. "The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications" Journal of Functional Biomaterials 9, no. 4: 58. https://doi.org/10.3390/jfb9040058
APA StyleMassaro, M., Colletti, C. G., Lazzara, G., & Riela, S. (2018). The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications. Journal of Functional Biomaterials, 9(4), 58. https://doi.org/10.3390/jfb9040058