Effect of Graphene Oxide/Graphene Hybrid on Mechanical Properties of Cement Mortar and Mechanism Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
- Synthesis of GO in GO/GR hybrid.
- Preparation of GO/GR hybrid.
- Preparation of cement mortars incorporating GO/GR hybrid.
2.1.1. Synthesis of GO
2.1.2. Preparation of GO/GR Hybrid
2.1.3. Preparation of Cement Mortar with GO/GR Hybrid
2.2. Testing
3. Results
3.1. Properties of GO
3.2. Mechanical Properties of Cement Mortar with GO/GR Hybrid
3.3. Dispersion of GR in GO Solution
3.4. Calorimetry
3.5. Porosity
4. Discussion
5. Conclusions
- GR was significantly dispersed in water when GO was incorporated. When the total amount of GO and GR was constant, the increase of GO dosage was beneficial for the dispersion of GR, which in turn, was beneficial for the mechanical properties of the cement mortar. Meanwhile, the decreased GR content in the hybrid with the increase of GO content was considered to reduce the mechanical properties of mortar. The tradeoff between the two factors resulted in the best performance of mortar at certain GO to GR ratios, such as 1:1 or 3:1.
- The enhancement of flexural strength is related to the amount of GR addition and its dispersion in GO. Therefore, it is believed that the mechanical properties of mortar could be further increased if a more effective dispersant for GR can be found and used.
- In addition to dispersibility, the enhancement in compressive strength is more closely related to the porosity and pore size distribution of cement mortar after hydration, while the enhancement in compressive strength is less related to the degree of hydration for mortars incorporating GO/GR hybrid.
Author Contributions
Funding
Conflicts of Interest
References
- Malhotra, V.M.; Mehta, P.K. Pozzolanic and Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Cotterell, B.; Mai, Y.W. Fracture Mechanics of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Norhasri, M.S.M.; Hamidah, M.S.; Fadzil, A.M. Applications of using nano material in concrete: A review. Constr. Build. Mater. 2017, 133, 91–97. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Changgu, L.; Xiaoding, W.; Kysar, J.W.; James, H.J.S. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar]
- Fang, M.; Wang, K.G.; Lu, H.B.; Yang, Y.L.; Nutt, S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 2009, 19, 7098–7105. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, R.; Wu, Z. Investigation of the Mechanical Properties and Microstructure of Graphene Nanoplatelet-Cement Composite. Nanomaterials 2016, 6, 200. [Google Scholar] [CrossRef]
- Hou, D.S.; Lu, Z.Y.; Li, X.Y.; Ma, H.Y.; Li, Z.J. Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms. Carbon 2017, 115, 188–208. [Google Scholar] [CrossRef]
- Cao, M.L.; Zhang, H.X.; Zhang, C. Effect of graphene on mechanical properties of cement mortars. J. Cent. South Univ. 2016, 23, 919–925. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef] [PubMed]
- Paredes, J.I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J.M. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, S.H.; Ma, Y.J.; Qiu, C.C.; Sun, T.; Liu, J.J.; Zhou, Q.F. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 2013, 49, 121–127. [Google Scholar] [CrossRef]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. Mechanical properties and microstructure of a graphene oxide-cement composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Hou, D.S.; Ma, H.Y.; Fan, T.Y.; Li, Z.J. Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste. Constr. Build. Mater. 2016, 119, 107–112. [Google Scholar] [CrossRef]
- Lv, S.H.; Liu, J.J.; Sun, T.; Ma, Y.J.; Zhou, Q.F. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr. Build. Mater. 2014, 64, 231–239. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, X.L.; Ge, C.; Li, Q.; Guo, L.P.; Shu, X.; Liu, J.P. Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Constr. Build. Mater. 2016, 113, 470–478. [Google Scholar] [CrossRef]
- Cao, C.H.; Daly, M.; Singh, C.V.; Sun, Y.; Filleter, T. High strength measurement of monolayer graphene oxide. Carbon 2015, 81, 497–504. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Luo, Y.; Yang, J.; Hou, J.G. How graphene is cut upon oxidation? J. Am. Chem. Soc. 2009, 131, 6320–6321. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.H.; Wei, C.; Gong, Y.Y.; Chen, Z.R.; Yang, D.J.; Su, H.; Liu, T.X. Efficient dispersion of carbon nanotube by synergistic effects of sisal cellulose nano-fiber and graphene oxide. Compos. Interfaces 2016, 24, 291–305. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, F.; Jie, H.; Ren, M.; Yu, Q.J.C.; Materials, B. Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr. Build. Mater. 2017, 134, 336–345. [Google Scholar]
- Hong, C.L.; Jin, X.; Totleben, J.; Lohrman, J.; Harak, E.; Subramaniam, B.; Chaudhari, R.V.; Ren, S.Q. Graphene oxide stabilized Cu2O for shape selective nanocatalysis. J. Mater. Chem. A 2014, 2, 7147–7151. [Google Scholar] [CrossRef]
- Hudson, M.J.; Hunter-Fujita, F.R.; Peckett, J.W.; Smith, P.M. Electrochemically prepared colloidal, oxidised graphite. J. Mater. Chem. 1997, 7, 301–305. [Google Scholar] [CrossRef]
- Peckett, J.W.; Trens, P.; Gougeon, R.D.; Pöppl, A.; Harris, R.K.; Hudson, M.J. Electrochemically oxidised graphite.: Characterisation and some ion exchange properties. Carbon 2000, 38, 345–353. [Google Scholar] [CrossRef]
- Xie, B.; Chen, Y.; Yu, M.; Shen, X.; Lei, H.; Xie, T.; Zhang, Y.; Wu, Y. Carboxyl-Assisted Synthesis of Nitrogen-Doped Graphene Sheets for Supercapacitor Applications. Nanoscale Res. Lett. 2015, 10, 1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmayya, M.; Dai, S.A.; Suen, S.Y. Sulfonated reduced graphene oxide catalyzed cyclization of hydrazides and carbon dioxide to 1,3,4-oxadiazoles under sonication. Sci. Rep. 2017, 7, 4675. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Stankovich, S.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347. [Google Scholar] [CrossRef]
- Lv, S.H.; Zhang, J.; Zhu, L.L.; Jia, C.M.; Luo, X.Q. Preparation of Regular Cement Hydration Crystals and Ordered Microstructures by Doping GON and an Investigation into Its Compressive and Flexural Strengths. Crystals 2017, 7, 165. [Google Scholar] [CrossRef] [Green Version]
- Szabo, T.; Berkesi, O.; Dekany, I. DRIFT study of deuterium-exchanged graphite oxide. Carbon 2005, 43, 3186–3189. [Google Scholar] [CrossRef]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Li, X.; Korayem, A.H.; Li, C.; Liu, Y.; He, H.; Sanjayan, J.; Duan, W. Incorporation of graphene oxide and silica fume into cement paste—A study of dispersion and compressive strength. Constr. Build. Mater. 2016, 123, 327–335. [Google Scholar] [CrossRef]
- Li, H.; Xiao, H.G.; Yuan, J.; Ou, J.P. Microstructure of cement mortar with nano-particles. Compos. Part B Eng. 2004, 35, 185–189. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Zhao, J.; Liu, F. Mechanical properties of graphene oxides. Nanoscale 2012, 4, 5910–5916. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.B.; Geng, Y.; Wang, S.J.; Li, Z.G.; Kim, J.K. Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon 2010, 48, 4315–4322. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, G.; van Breugel, K. Characterization of pore structure in cement-based materials using pressurization-depressurization cycling mercury intrusion porosimetry (PDC-MIP). Cem. Concr. Res. 2010, 40, 1120–1128. [Google Scholar] [CrossRef]
GO:GR | GO (%) | GR (%) |
---|---|---|
0:0 | 0 | 0 |
1:0 | 0.08 | 0 |
3:1 | 0.06 | 0.02 |
1:1 | 0.04 | 0.04 |
1:3 | 0.02 | 0.06 |
0:1 | 0 | 0.08 |
Finesse (%) | Density (g/cm3) | Specific Surface Area (m2/kg) | Consistency (%) |
---|---|---|---|
0.08 | 3.15 | 346 | 24.8 |
GO:GR | Flexural Strength (MPa) | Increment (%) | ||||
---|---|---|---|---|---|---|
3 d | 7 d | 28 d | 3 d | 7 d | 28 d | |
0:0 | 6.12 | 8.48 | 9.60 | – | – | – |
1:0 | 6.80 | 8.72 | 10.20 | 11.11 | 2.83 | 6.25 |
3:1 | 7.52 | 9.62 | 11.29 | 22.88 | 13.44 | 17.60 |
1:1 | 7.66 | 10.06 | 12.55 | 25.16 | 18.63 | 30.73 |
1:3 | 7.46 | 9.88 | 11.82 | 21.90 | 16.51 | 23.13 |
0:1 | 6.77 | 8.70 | 11.73 | 10.62 | 2.59 | 22.19 |
GO:GR | Compressive Strength (MPa) | Increment (%) | ||||
---|---|---|---|---|---|---|
3 d | 7 d | 28 d | 3 d | 7 d | 28 d | |
0:0 | 32 | 43.1 | 56.4 | – | – | – |
1:0 | 36.5 | 47.6 | 63.3 | 14.06 | 10.44 | 12.23 |
3:1 | 44.2 | 56.2 | 66.4 | 38.13 | 30.39 | 17.73 |
1:1 | 43.4 | 53.4 | 67.4 | 35.63 | 23.90 | 19.50 |
1:3 | 40.7 | 55.2 | 65.2 | 27.19 | 28.07 | 15.60 |
0:1 | 39.2 | 49.0 | 64.8 | 22.50 | 13.69 | 14.89 |
GO:GR | Porosity (%) | Average Pore Diameter (nm) | Proportion of Pore Diameter under 50 nm (%) |
---|---|---|---|
0:0 | 16.78 | 119.15 | 15.54 |
1:0 | 10.35 | 59.18 | 36.83 |
3:1 | 8.31 | 61.8 | 38.86 |
1:1 | 8.25 | 64.52 | 39.75 |
1:3 | 10.33 | 60.19 | 38.90 |
0:1 | 10.56 | 70.38 | 32.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Ling, L.; Ren, Z.; Memon, S.A.; Xing, F. Effect of Graphene Oxide/Graphene Hybrid on Mechanical Properties of Cement Mortar and Mechanism Investigation. Nanomaterials 2020, 10, 113. https://doi.org/10.3390/nano10010113
Sun H, Ling L, Ren Z, Memon SA, Xing F. Effect of Graphene Oxide/Graphene Hybrid on Mechanical Properties of Cement Mortar and Mechanism Investigation. Nanomaterials. 2020; 10(1):113. https://doi.org/10.3390/nano10010113
Chicago/Turabian StyleSun, Hongfang, Li Ling, Zhili Ren, Shazim Ali Memon, and Feng Xing. 2020. "Effect of Graphene Oxide/Graphene Hybrid on Mechanical Properties of Cement Mortar and Mechanism Investigation" Nanomaterials 10, no. 1: 113. https://doi.org/10.3390/nano10010113
APA StyleSun, H., Ling, L., Ren, Z., Memon, S. A., & Xing, F. (2020). Effect of Graphene Oxide/Graphene Hybrid on Mechanical Properties of Cement Mortar and Mechanism Investigation. Nanomaterials, 10(1), 113. https://doi.org/10.3390/nano10010113