CSD-Grown Y1−xGdxBa2Cu3O7−δ-BaHfO3 Nanocomposite Films on Ni5W and IBAD Technical Substrates
Abstract
:1. Introduction
2. Sample Preparation and Characterization Techniques
2.1. Sample Preparation
2.2. Thin-Film Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foltyn, S.R.; Civale, L.; MacManus-Driscoll, J.L.; Jia, Q.X.; Maiorov, B.; Wang, H.; Maley, M. Materials science challenges for high-temperature superconducting wire. Nat. Mater. 2007, 6, 631–642. [Google Scholar] [CrossRef]
- Araki, T.; Hirabayashi, I. Review of a chemical approach to YBa2Cu3O7-x -coated superconductors—Metalorganic deposition using trifluoroacetates. Supercond. Sci. Technol. 2003, 16, R71–R94. [Google Scholar] [CrossRef]
- Goyal, A.; Paranthaman, M.P.; Schoop, U. The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 2004, 29, 552–561. [Google Scholar] [CrossRef]
- Arendt, P.N.; Foltyn, S.R. Biaxially textured IBAD-MgO templates for YBCO-coated conductors. MRS Bull. 2004, 29, 543–550. [Google Scholar] [CrossRef]
- Murakami, M.; Sakai, N.; Higuchi, T.; Yoo, S. Melt-processed light rare earth element-Ba-Cu-O. Supercond. Sci. Technol. 1996, 9, 1015–1032. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ozaki, T.; Ichino, Y.; Takai, Y.; Matsumoto, K.; Ichinose, A.; Mukaidad MHorii, S. Progress in development of advanced PLD process for high Jc REBCO film. Phys. C Supercond. 2008, 468, 1606–1610. [Google Scholar] [CrossRef]
- Wee, S.H.; Goyal, A.; Martin, P.M.; Heatherly, L. High in-field critical current densities in epitaxial NdBa2Cu3O7−δ films on RABiTS by pulsed laser deposition. Supercond. Sci. Technol. 2006, 19, 865–868. [Google Scholar] [CrossRef]
- Cayado, P.; Mundet, B.; Eloussifi, H.; Vallés, F.; Coll, M.; Ricart, S.; Gázquez, J.; Palau, A.; Roura, P.; Farjas, J.; et al. Epitaxial superconducting GdBa2Cu3O7-δ/Gd2O3 nanocomposite thin films from advanced low-fluorine solutions. Supercond. Sci. Technol. 2017, 30. [Google Scholar] [CrossRef] [Green Version]
- Cayado, P.; Erbe, M.; Kauffmann-Weiss, S.; Bühler, C.; Jung, A.; Hänisch JHolzapfel, B. Large critical current densities and pinning forces in CSD-grown superconducting GdBa2Cu3O7-x-BaHfO3 nanocomposite films. Supercond. Sci. Technol. 2017, 30. [Google Scholar] [CrossRef]
- Erbe, M.; Hänisch, J.; Freudenberg, T.; Kirchner, A.; Mönch, I.; Kaskel, S.; Schultz LHolzapfel, B. Improved REBa2Cu3O7−x (RE = Y, Gd) structure and superconducting properties by addition of acetylacetone in TFA-MOD precursor solutions. J. Mater. Chem. A 2014, 2, 4932–4944. [Google Scholar] [CrossRef] [Green Version]
- Andreouli, C.; Tsetsekou, A. Synthesis of HTSC Re(Y)Ba2Cu3Ox powders: The role of ionic radius. Phys. C Supercond. 1997, 291, 274–286. [Google Scholar] [CrossRef]
- MacManus-Driscoll, J.L.; Alonso, J.A.; Wang, P.C.; Geballe, T.H.; Bravman, J.C. Studies of structural disorder in ReBa2Cu3O7−x thin films (Re = rare earth) as a function of rare-earth ionic radius and film deposition conditions. Phys. C Supercond. 1994, 232, 288–308. [Google Scholar] [CrossRef]
- MacManus-Driscoll, J.L.; Foltyn, S.R.; Jia, Q.X.; Wang, H.; Serquis, A.; Maiorov, B.; Civale, L.; Lin, Y.; Hawley, M.E.; Maley, M.P.; et al. Systematic enhancement of in-field critical current density with rare-earth ion size variance in superconducting rare-earth barium cuprate films. Appl. Phys. Lett. 2004, 84, 5329–5331. [Google Scholar] [CrossRef]
- MacManus-Driscoll, J.L.; Foltyn, S.R.; Jia, Q.X.; Wang, H.; Serquis, A.; Maiorov, B.; Civale, L.; Lin, Y.; Hawley, M.E.; Maley, M.P.; et al. Rare earth ion size effects and enhanced critical current densities in Y2/3Sm1/3Ba2Cu3O7−x coated conductors. Appl. Phys. Lett. 2005, 86, 32505. [Google Scholar] [CrossRef]
- Islam, M.S.; Baetzold, R.C. Atomistic simulation of dopant substitution in YBa2Cu3O7. Phys. Rev. B 1989, 40, 10926–10935. [Google Scholar] [CrossRef]
- Macmanus-Driscoll, J.L. Materials chemistry and thermodynamics of REBa2Cu3O7−x. Adv. Mater. 1997, 9, 457–473. [Google Scholar] [CrossRef]
- Cayado, P.; Erbe, M.; Kauffmann-Weiss, S.; Jung, A.; Hänisch, J.; Holzapfel, B. Chemical solution deposition of Y1−xGdxBa2Cu3O7−δ–BaHfO3 nanocomposite films: Combined influence of nanoparticles and rare-earth mixing on growth conditions and transport properties. RSC Adv. 2018, 8, 42398–42404. [Google Scholar] [CrossRef] [Green Version]
- Wee, S.H.; Specht, E.D.; Cantoni, C.; Zuev, Y.L.; Maroni, V.; Wong-Ng, W.; Liu, G.; Haugan, T.J.; Goyal, A. Formation of stacking faults and their correlation with flux pinning and critical current density in Sm-doped YBa2Cu3O7−δ films. Phys. Rev. B 2011, 83, 224520. [Google Scholar] [CrossRef] [Green Version]
- Miura, M.; Kato, T.; Yoshizumi, M.; Yamada, Y.; Izumi, T.; Hirayama, T.; Shiohara, Y. Rare earth substitution effects and magnetic field dependence of critical current in Y1-xRExBa2Cu3Oy coated conductors with nanoparticles (RE = Sm, Gd). Appl. Phys. Express 2009, 2, 23002. [Google Scholar] [CrossRef]
- Selvamanickam, V.; Chen, Y.; Zhang, Y.; Guevara, A.; Shi, T.; Yao, Y.; Majkic, G.; Lei, C.; Galtsyan, E.; Miller, D.J. Effect of rare-earth composition on microstructure and pinning properties of Zr-doped (Gd,Y)Ba2Cu3Ox superconducting tapes. Supercond. Sci. Technol. 2012, 25, 45012. [Google Scholar] [CrossRef]
- Irjala, M.; Huhtinen, H.; Paturi, P.; Kumar, A.; Awana, V.P.S.; Narlikar, A.V.; Laiho, R. Optimization of the Pr concentration in Y1-xPrxBCO films prepared by pulsed laser deposition. J. Phys. Conf. Ser. 2009, 153, 12014. [Google Scholar] [CrossRef]
- Kinoshita, K.; Matsuda, A.; Shibata, H.; Ishii, T.; Watanabe, T.; Yamada, T. Crystal structure and superconductivity in Ba2Y1-xPrxCu3O7-y. Jpn. J. Appl. Phys. 1988, 27, L1642–L1645. [Google Scholar] [CrossRef]
- Wen, H.H.; Zhao, Z.X.; Wang, R.L.; Li, H.C.; Yin, B. Evidence for the lattice-mismatch-stress-field induced flux pinning in (Gd1−xYx)Ba2Cu3O7−σ thin films. Phys. C Supercond. Appl. 1996, 262, 81–88. [Google Scholar] [CrossRef]
- Jian, H.; Shao, D.; Yang, Z.; Zhu, X.; Sun, Y. Jc enhancement and flux pinning in Y1-xGdxBCO and (Gd,Eu) codoped Y0.9-yEuyGd0.1BCO thin films by TFA-MOD. Phys. C Supercond. 2013, 488, 39–45. [Google Scholar] [CrossRef]
- Muralidhar, M.; Murakami, M. Effect of Eu/Gd ratio on flux pinning in (Nd,Eu,Gd)-Ba-Cu-O. Supercond. Sci. Technol. 2000, 13, 1315–1321. [Google Scholar] [CrossRef]
- Cai, C.; Hanisch, J.; Gemming, T.; Holzapfel, B. Anisotropic enhancement of flux pinning in mixed rare earth 123-type thin films. IEEE Trans. Appiled Supercond. 2005, 15, 3738–3741. [Google Scholar] [CrossRef]
- Narlikar, A.V. (Ed.) Studies of High Temperature Superconductors; Nova Science Publishers: Hauppauge, NY, USA, 2006; Volume 49. [Google Scholar]
- Li, Y.; Zhao, Z.-X. Stress-field pinning induced by the lattice mismatch in 123 phase. Phys. C Supercond. 2001, 351, 1–4. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Llordés, A.; Gázquez, J.; Gibert, M.; Romà, N.; Ricart, S.; Pomar, A.; Sandiumenge, F.; Mestres, N.; Puig, T.; et al. Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films. Nat. Mater. 2007, 6, 367–373. [Google Scholar] [CrossRef]
- Llordés, A.; Palau, A.; Gázquez, J.; Coll, M.; Vlad, R.; Pomar, A.; Arbiol, J.; Guzmán, R.; Ye, S.; Rouco, V.; et al. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat. Mater. 2012, 11, 329–336. [Google Scholar] [CrossRef]
- Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; et al. BaHfO3 artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films. Supercond. Sci. Technol. 2015, 28, 114002. [Google Scholar] [CrossRef]
- Cayado, P.; De Keukeleere, K.; Garzón, A.; Pérez-Mirabet, L.; Meledin, A.; De Roo, J.; Vallés, F.; Mundet, B.; Rijckaert, H.; Pollefeyt, G.; et al. Epitaxial YBa2Cu3O7-x nanocomposite thin films from colloidal solutions. Supercond. Sci. Technol. 2015, 28. [Google Scholar] [CrossRef] [Green Version]
- De Keukeleere, K.; Cayado, P.; Meledin, A.; Vallès, F.; De Roo, J.; Rijckaert, H.; Pollefeyt, G.; Bruneel, E.; Palau, A.; Coll, M.; et al. Superconducting YBa2Cu3O7-δ nanocomposites using preformed ZrO2 nanocrystals: Growth mechanisms and vortex pinning properties. Adv. Electron. Mater. 2016, 1600161. [Google Scholar] [CrossRef] [Green Version]
- Engel, S.; Thersleff, T.; Hühne, R.; Schultz, L.; Holzapfel, B. Enhanced flux pinning in YBa2Cu3O7 layers by the formation of nanosized BaHfO3 precipitates using the chemical deposition method. Appl. Phys. Lett. 2007, 90, 102505. [Google Scholar] [CrossRef]
- Rijckaert, H.; Pollefeyt, G.; Sieger, M.; Hänisch, J.; Bennewitz, J.; De Roo, J.; De Keukeleere, K.; Hühne, R.; Bäcker, M.; Paturi, P.; et al. Optimizing nanocomposites through nanocrystal surface chemistry: Superconducting YBa2Cu3O7 thin films via low-fluorine metal organic deposition and preformed metal oxide nanocrystals. Chem. Mater. 2017, 29, 6104–6113. [Google Scholar] [CrossRef] [Green Version]
- Rijckaert, H.; Hänisch, J.; Pollefeyt, G.; Bäcker, M.; Van Driessche, I. Influence of Ba2+ consumption and intermediate dwelling during processing of YBa2Cu3O7 nanocomposite films. J. Am. Ceram. Soc. 2018, 102, 3870–3878. [Google Scholar] [CrossRef]
- Obradors, X.; Puig, T. Coated conductors for power applications: Materials challenges. Supercond. Sci. Technol. 2014, 27, 44003. [Google Scholar] [CrossRef]
- Obradors, X.; Puig, T.; Pomar, A.; Sandiumenge, F.; Piñol, S.; Mestres, N.; Castaño, O.; Coll, M.; Cavallaro, A.; Palau, A.; et al. Chemical solution deposition: A path towards low cost coated conductors. Supercond. Sci. Technol. 2004, 17, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Obradors, X.; Puig, T.; Pomar, A.; Sandiumenge, F.; Mestres, N.; Coll, M.; Cavallaro, A.; Romà, N.; Gázquez, J.; González, J.C.; et al. Progress towards all-chemical superconducting YBa2Cu3O7-coated conductors. Supercond. Sci. Technol. 2006, 19, S13–S26. [Google Scholar] [CrossRef]
- Izumi, T.; Yoshizumi, M.; Matsuda, J.; Nakaoka, K.; Kitoh, Y.; Sutoh, Y.; Nakanishi, T.; Nakai, A.; Suzuki, K.; Yamada, Y.; et al. Progress in development of advanced TFA-MOD process for coated conductors. Phys. C Supercond. Appl. 2007, 463, 510–514. [Google Scholar] [CrossRef]
- Gupta, A.; Jagannathan, R.; Cooper, E.I.; Giess, E.A.; Landman, J.I.; Hussey, B.W. Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 1988, 52, 2077–2079. [Google Scholar] [CrossRef]
- Lu, J.; Levitan, J.; McRae, D.; Walsh, R. Contact resistance between two REBCO tapes: The effects of cyclic loading and surface coating. Supercond. Sci. Technol. 2018, 31, 85006. [Google Scholar] [CrossRef]
- Liu, L.; Wang, W.; Zheng, T.; Liu, S.; Wang, Y.; Li, Y. The influence of substrate temperature of seed layer on the structure and superconducting property of BaHfO3-Doped Y0.5Gd0.5Ba2Cu3O7−δ film prepared by pulsed laser deposition. J. Supercond. Nov. Magn. 2019, 32, 1149–1155. [Google Scholar] [CrossRef]
- Selvamanickam, V.; Chen, Y.; Shi, T.; Liu, Y.; Khatri, N.D.; Liu, J.; Yao, Y.; Xiong, X.; Lei, C.; Soloveichik, S.; et al. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition. Supercond. Sci. Technol. 2013, 26, 35006. [Google Scholar] [CrossRef]
- Chen, Y.; Selvamanickam, V.; Zhang, Y.; Zuev, Y.; Cantoni, C.; Specht, E.; Paranthaman, M.P.; Aytug, T.; Goyal, A.; Lee, D. Enhanced flux pinning by BaZrO3 and (Gd,Y)2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes. Appl. Phys. Lett. 2009, 94, 62513. [Google Scholar] [CrossRef]
- Selvamanickam, V.; Gharahcheshmeh, M.H.; Xu, A.; Galstyan, E.; Delgado, L.; Cantoni, C. High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes. Appl. Phys. Lett. 2015, 106, 32601. [Google Scholar] [CrossRef]
- Engel, S.; Knoth, K.; Hühne, R.; Schultz, L.; Holzapfel, B. An all chemical solution deposition approach for the growth of highly textured CeO2 cap layers on La2Zr2O7-buffered long lengths of biaxially textured Ni-W substrates for YBCO-coated conductors. Supercond. Sci. Technol. 2005, 18, 1385–1390. [Google Scholar] [CrossRef]
- Verebelyi, D.T.; Schoop, U.; Thieme, C.; Li, X.; Zhang, W.; Kodenkandath, T.; Malozemoff, A.P.; Nguyen, N.; Siegal, E.; Buczek, D.; et al. Uniform performance of continuously processed MOD-YBCO-coated conductors using a textured Ni–W substrate. Supercond. Sci. Technol. 2003, 16, L19–L22. [Google Scholar] [CrossRef]
- Shin, H.-S.; Kim, K.-H.; Dizon, J.R.C.; Kim, T.-Y.; Ko, R.-K.; Oh, S.-S. The strain effect on critical current in YBCO coated conductors with different stabilizing layers. Supercond. Sci. Technol. 2005, 18, S364–S368. [Google Scholar] [CrossRef]
- Paranthaman, M.; Chirayil, T.G.; Sathyamurthy, S.; Beach, D.B.; Goyal, A.; List, F.A.; Lee, D.F.; Cui, X.; Lu, S.W.; Kang, B.; et al. Fabrication of long lengths of YBCO coated conductors using a continuous reel-to-reel dip-coating unit. IEEE Trans. Appl. Supercond. 2001, 11, 3146–3149. [Google Scholar] [CrossRef]
- Eickemeyer, J.; Selbmann, D.; Opitz, R.; Wendrock, H.; Maher, E.; Miller, U.; Prusseit, W. Highly cube textured Ni-W-RABiTS tapes for YBCO coated conductors. Phys. C Supercond. 2002, 372–376, 814–817. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.; Paranthaman, M.; Sathyamurthy, S.; Aytug, T.; Kang, S.; Lee, D.F.; Goyal, A.; Payzant, E.A.; Salama, K. MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors. Supercond. Sci. Technol. 2003, 16, 1305–1309. [Google Scholar] [CrossRef]
- Pomar, A.; Cavallaro, A.; Coll, M.; Gàzquez, J.; Palau, A.; Sandiumenge, F.; Puig, T.; Obradors, X.; Freyhardt, H.C. All-chemical YBa2Cu3O7 coated conductors on IBAD-YSZ stainless steel substrates. Supercond. Sci. Technol. 2006, 19, L1–L4. [Google Scholar] [CrossRef]
- Coll, M.; Gàzquez, J.; Hühne, R.; Holzapfel, B.; Morilla, Y.; García-López, J.; Pomar, A.; Sandiumenge, F.; Puig, T.; Obradors, X. All chemical YBa2Cu3O7 superconducting multilayers: Critical role of CeO 2 cap layer flatness. J. Mater. Res. 2009, 24, 1446–1455. [Google Scholar] [CrossRef] [Green Version]
- Zalamova, K.; Pomar, A.; Palau, A.; Puig, T.; Obradors, X. Intermediate phase evolution in YBCO thin films grown by the TFA process. Supercond. Sci. Technol. 2010, 23, 14012. [Google Scholar] [CrossRef]
- Lee, J.-W.; Choi, S.-M.; Song, J.-H.; Lee, J.-H.; Moon, S.-H.; Yoo, S.-I. Stability phase diagram of GdBa2Cu3O7−δ in low oxygen pressures. J. Alloys Compd. 2014, 602, 78–86. [Google Scholar] [CrossRef]
- Zhang, W.; Osamura, K. Stability and crystal structure of LnBa6Cu3Ox phase (Ln = lanthanide). Phys. C Supercond. 1991, 174, 126–134. [Google Scholar] [CrossRef]
- Chu, J.; Zhao, Y.; Khan, M.Z.; Tang, X.; Wu, W.; Shi, J.; Wu, Y.; Huhtinen, H.; Suo, H.; Jin, Z. Insight into the interfacial nucleation and competitive growth of YBa2Cu3O7−δ films as high-performance coated conductors by a fluorine-free metal-organic decomposition route. Cryst. Growth Des. 2019, 19, 6752–6762. [Google Scholar] [CrossRef]
- Feldmann, D.M.; Holesinger, T.G.; Feenstra, R.; Cantoni, C.; Zhang, W.; Rupich, M.; Li, X.; Durrell, J.H.; Gurevich, A.; Larbalestier, D.C. Mechanisms for enhanced supercurrent across meandered grain boundaries in high-temperature superconductors. J. Appl. Phys. 2007, 102, 83912. [Google Scholar] [CrossRef]
- Zalamova, K.; Romà, N.; Pomar, A.; Morlens, S.; Puig, T.; Gàzquez, J.; Carrillo, A.E.; Sandiumenge, F.; Ricart, S.; Mestres, N.; et al. Smooth stress relief of trifluoroacetate metal-organic solutions for YBa2Cu3O7 film growth. Chem. Mater. 2006, 18, 5897–5906. [Google Scholar] [CrossRef]
x | Optimized Tcrys (°C) | Optimized pO2 (ppm) |
---|---|---|
0 | 770 | 200 |
0.33 | 780 | 150 |
0.5 | 780 | 100 |
0.66 | 790 | 75 |
1 | 790 | 50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cayado, P.; Rijckaert, H.; Erbe, M.; Langer, M.; Jung, A.; Hänisch, J.; Holzapfel, B. CSD-Grown Y1−xGdxBa2Cu3O7−δ-BaHfO3 Nanocomposite Films on Ni5W and IBAD Technical Substrates. Nanomaterials 2020, 10, 21. https://doi.org/10.3390/nano10010021
Cayado P, Rijckaert H, Erbe M, Langer M, Jung A, Hänisch J, Holzapfel B. CSD-Grown Y1−xGdxBa2Cu3O7−δ-BaHfO3 Nanocomposite Films on Ni5W and IBAD Technical Substrates. Nanomaterials. 2020; 10(1):21. https://doi.org/10.3390/nano10010021
Chicago/Turabian StyleCayado, Pablo, Hannes Rijckaert, Manuela Erbe, Marco Langer, Alexandra Jung, Jens Hänisch, and Bernhard Holzapfel. 2020. "CSD-Grown Y1−xGdxBa2Cu3O7−δ-BaHfO3 Nanocomposite Films on Ni5W and IBAD Technical Substrates" Nanomaterials 10, no. 1: 21. https://doi.org/10.3390/nano10010021
APA StyleCayado, P., Rijckaert, H., Erbe, M., Langer, M., Jung, A., Hänisch, J., & Holzapfel, B. (2020). CSD-Grown Y1−xGdxBa2Cu3O7−δ-BaHfO3 Nanocomposite Films on Ni5W and IBAD Technical Substrates. Nanomaterials, 10(1), 21. https://doi.org/10.3390/nano10010021