Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frey, N.A.; Peng, S.; Cheng, K.; Sun, S. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532–2542. [Google Scholar] [CrossRef] [PubMed]
- Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Ali, S.F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 544–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.-H.; Juang, R.-S. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: A review. J. Nanoparticle Res. 2011, 13, 4411–4430. [Google Scholar] [CrossRef]
- Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Ammar, S.; Gadri, A. Synthesis, photoluminescence and Magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Phys. E Low-Dimensional Syst. Nanostruct. 2018, 101, 212–219. [Google Scholar] [CrossRef]
- Benz, M. Superparamagnetism: Theory and Applications. Superparamagn. Theory Appl. 2012, 22, 1–27. [Google Scholar]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Simonsen, G.; Strand, M.; Øye, G. Potential applications of magnetic nanoparticles within separation in the petroleum industry. J. Pet. Sci. Eng. 2018, 165, 488–495. [Google Scholar] [CrossRef]
- Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010, 62, 144–149. [Google Scholar] [CrossRef]
- Karade, V.C.; Dongale, T.D.; Sahoo, S.C.; Kollu, P.; Chougale, A.; Patil, P.S.; Patil, P. Effect of reaction time on structural and magnetic properties of green-synthesized magnetic nanoparticles. J. Phys. Chem. Solids 2018, 120, 161–166. [Google Scholar] [CrossRef]
- Levy, D.; Giustetto, R.; Hoser, A. Structure of magnetite (Fe3O4) above the Curie temperature: A cation ordering study. Phys. Chem. Miner. 2011, 39, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.; Langell, M. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl. Surf. Sci. 2014, 303, 6–13. [Google Scholar] [CrossRef]
- Barcena, C.; Sra, A.K.; Gao, J. Applications of Magnetic Nanoparticles in Biomedicine. Nanoscale Magn. Mater. Appl. 2009, 167, 591–626. [Google Scholar] [CrossRef]
- Gregorio-Jáuregui, K. “Item 1025/494 | Repositorio CIQA”, Ciqa.repositorioinstitucional.mx. 2020. Available online: http://ciqa.repositorioinstitucional.mx/jspui/handle/1025/494 (accessed on 12 September 2020).
- Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Ammar, S.; Gadri, A. Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: Effect of varying the nature of precursor. Phys. E Low-Dimensional Syst. Nanostruct. 2018, 97, 328–334. [Google Scholar] [CrossRef]
- Marathe, K.; Doshi, P. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. IEEE Int. Conf. Intell. Robot. Syst. 2015, 2015, 2550–2555. [Google Scholar]
- Bantz, C.; Koshkina, O.; Lang, T.; Galla, H.-J.; Kirkpatrick, C.J.; Stauber, R.H.; Maskos, M. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J. Nanotechnol. 2014, 5, 1774–1786. [Google Scholar] [CrossRef]
- Wan, J.; Yao, Y.; Tang, G. Controlled-synthesis, characterization, and magnetic properties of Fe3O4 nanostructures. Appl. Phys. A Mater. Sci. Process. 2007, 89, 529–532. [Google Scholar] [CrossRef]
- Zolghadr, S.; Kimiagar, S.; Davarpanah, A.M. Magnetic property of α-Fe2O3-GO nanocomposite. IEEE Trans. Magn. 2017, 53, 1–6. [Google Scholar] [CrossRef]
- Nagarjuna, R.; Challagulla, S.; Ganesan, R.; Roy, S. High rates of Cr (VI) photoreduction with magnetically recoverable nano-Fe3O4@Fe2O3/Al2O3 catalyst under visible light. Chem. Eng. J. 2017, 308, 59–66. [Google Scholar] [CrossRef]
- Cirtoaje, C.; Petrescu, E.; Stan, C.; Creanga, D. Ferromagnetic nanoparticles suspensions in twisted nematic. Phys. E Low-Dimensional Syst. Nanostruct. 2016, 79, 38–43. [Google Scholar] [CrossRef]
- Yang, G.W. Laser Ablation in Liquids: Applications in the Synthesis of Nanocrystals. Prog. Mater. Sci. 2007, 38, 648–698. [Google Scholar] [CrossRef]
- Santillán, J.M.J.; Arboleda, D.M.; Coral, D.F.; Van Raap, M.F.; Muraca, D.; Schinca, D.C.; Scaffardi, L.B. Optical and Magnetic Properties of Fe Nanoparticles Fabricated by Femtosecond Laser Ablation in Organic and Inorganic Solvents. ChemPhysChem 2017, 18, 1192–1209. [Google Scholar] [CrossRef] [PubMed]
- Svetlichnyi, V.A.; Shabalina, A.V.; Lapin, I.N.; Goncharova, D.A.; Kharlamova, T.S.; Stadnichenko, A.I. Comparative study of magnetite nanoparticles obtained by pulsed laser ablation in water and air. Appl. Surf. Sci. 2019, 468, 402–410. [Google Scholar] [CrossRef]
- Ismail, R.A.; Sulaiman, G.M.; Abdulrahman, S.A.; Marzoog, T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C 2015, 53, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.; Maier-Hauff, K. Magnetic Nanoparticles for Intracranial Thermotherapy. J. Nanosci. Nanotechnol. 2007, 7, 4604–4606. [Google Scholar] [CrossRef] [PubMed]
- Yasemian, A.R.; Almasi-Kashi, M.; Ramazani, A. Surfactant-free synthesis and magnetic hyperthermia investigation of iron oxide (Fe3O4) nanoparticles at different reaction temperatures. Mater. Chem. Phys. 2019, 230, 9–16. [Google Scholar] [CrossRef]
- Zhang, D.; Gökce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef]
- Plata, L. Caracterización de suspensiones coloidales de nanopartículas metálicas sintetizadas por ablación láser de pulsos ultracortos. Ph.D. Thesis, Facultad de Ciencias Exactas, La Plata, Argentina, 18 February 2018. [Google Scholar]
- Riabinina, D.; Chaker, M.; Margot, J. Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media. Nanotechnol. 2012, 23, 135603. [Google Scholar] [CrossRef]
- Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013, 15, 3027–3046. [Google Scholar] [CrossRef]
- Poulin, S.; França, R.; Moreau-Bélanger, L.; Sacher, E. Confirmation of X-ray Photoelectron Spectroscopy Peak Attributions of Nanoparticulate Iron Oxides, Using Symmetric Peak Component Line Shapes. J. Phys. Chem. C 2010, 114, 10711–10718. [Google Scholar] [CrossRef]
- Sharma, H. Re: What are the Major Sources of Carbon Peaks in XPS Spectra of Non-Carbonous Samples? 2016. Available online: https://www.researchgate.net/post/What_are_the_major_sources_of_carbon_peaks_in_XPS_spectra_of_non-carbonous_samples/58555ceb615e276a3f466071/citation/download (accessed on 19 August 2020).
- García-Benjume, M.L.; Espitia-Cabrera, M.I.; Contreras-García, M.E. Hierarchical macro-mesoporous structures in the system TiO2-Al2O3, obtained by hydrothermal synthesis using Tween-20® as a directing agent. Mater. Charact. 2009, 60, 1482–1488. [Google Scholar] [CrossRef]
- Hedayatnasab, Z.; Abnisa, F.; Daud, W.M.A.W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 2017, 123, 174–196. [Google Scholar] [CrossRef]
- Dutz, S.; Hergt, R. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int. J. Hyperth. 2013, 29, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimisadr, S.; Aslibeiki, B.; Asadi, R. Magnetic hyperthermia properties of iron oxide nanoparticles: The effect of concentration. Phys. C Supercond. 2018, 549, 119–121. [Google Scholar] [CrossRef]
- Lanier, O.; Korotych, O.I.; Monsalve, A.G.; Wable, D.; Savliwala, S.; Grooms, N.W.F.; Nacea, C.; Tuitt, O.R.; Dobson, J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int. J. Hyperth. 2019, 36, 686–700. [Google Scholar] [CrossRef] [PubMed]
Energy (mJ) | DLS Measurements | STEM Measurements | ||
---|---|---|---|---|
Average Size (nm) | Standard Deviation (nm) | Average Size (nm) | Standard Deviation (nm) | |
370 | 25.868 | 4.189 | 16.827 | 6.044 |
279 | 65.363 | 6.680 | 15.695 | 4.854 |
173 | 42.176 | 25.585 | 14.870 | 8.347 |
90 | 25.900 | 0.761 | 18.719 | 12.825 |
Sample | At% (EDS) | |
---|---|---|
Fe | O | |
90 mJ | 5.2 | 94.8 |
173 mJ | 9.3 | 90.7 |
279 mJ | 10 | 90 |
370 mJ | 9.9 | 90.1 |
Peak | Assignation | Area under the Curve (cm−1) | |||
---|---|---|---|---|---|
90 mJ | 173 mJ | 279 mJ | 370 mJ | ||
224.83 | Hematite | 1.6 | 2.47 | 1.72 | 1.85 |
410.90 | Hematite | 0.47 | 3.87 | 0.67 | 1.04 |
626.73 | Hematite | 1.13 | 1.85 | 1.05 | 1.19 |
797.91 | Maghemite | 2.27 | 4.01 | 2.49 | 2.33 |
1004.82 | Maghemite | 12.99 | 14.19 | 12.53 | 11.56 |
1190.88 | Hematite | 8.17 | 9.18 | 7.87 | 8.16 |
1317.40 | Hematite | 1.71 | 3.14 | 1.32 | 1.12 |
1451.38 | Hematite | 1.29 | 1.84 | 1.46 | 1.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Chaverra, M.J.; Restrepo-Parra, E.; Acosta-Medina, C.D.; Mello, A.; Ospina, R. Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications. Nanomaterials 2020, 10, 2099. https://doi.org/10.3390/nano10112099
Rivera-Chaverra MJ, Restrepo-Parra E, Acosta-Medina CD, Mello A, Ospina R. Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications. Nanomaterials. 2020; 10(11):2099. https://doi.org/10.3390/nano10112099
Chicago/Turabian StyleRivera-Chaverra, María J., Elisabeth Restrepo-Parra, Carlos D. Acosta-Medina, Alexandre. Mello, and Rogelio. Ospina. 2020. "Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications" Nanomaterials 10, no. 11: 2099. https://doi.org/10.3390/nano10112099
APA StyleRivera-Chaverra, M. J., Restrepo-Parra, E., Acosta-Medina, C. D., Mello, A., & Ospina, R. (2020). Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications. Nanomaterials, 10(11), 2099. https://doi.org/10.3390/nano10112099