Synthesis of High-Density Indium Oxide Nanowires with Low Electrical Resistivity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, W.-C.; Chen, J.-Y.; Huang, C.-W.; Chiu, C.-H.; Lin, T.-Y.; Wu, W.-W. Phosphorus-Doped p–n Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their Optoelectronic Properties. Chem. Mater. 2015, 27, 4216–4221. [Google Scholar] [CrossRef]
- Hong, Y.-S.; Chen, J.-Y.; Huang, C.-W.; Chiu, C.-H.; Huang, Y.-T.; Huang, T.K.; He, R.S.; Wu, W.-W. Single-crystalline CuO nanowires for resistive random access memory applications. Appl. Phys. Lett. 2015, 106, 173103. [Google Scholar] [CrossRef]
- Huang, W.-J.; Chen, Y.-Y.; Hsu, H.-M.; Lu, K.-C. Single Crystalline Iron Silicide and Beta-Iron Disilicide Nanowires Formed through Chemical Vapor Deposition. Materials 2018, 11, 2384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, Y.-T.; Yang, S.-M.; Lu, K.-C. Synthesis and Photocatalytic Properties of CuO-CuS Core-Shell Nanowires. Materials 2019, 12, 1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.; Sarkar, K.; Wiederrecht, G.P.; Schaller, R.D.; Gosztola, D.J.; Stroscio, M.; Dutta, M. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires. Nanotechnology 2018, 29, 175. [Google Scholar] [CrossRef]
- Zou, X.; Liu, X.; Wang, C.; Jiang, Y.; Wang, Y.; Xiao, X.; Ho, J.C.; Li, J.; Jiang, C.; Xiong, Q.; et al. Controllable Electrical Properties of Metal-Doped In2O3 Nanowires for High-Performance Enhancement-Mode Transistors. Acs Nano 2012, 7, 804–810. [Google Scholar] [CrossRef]
- Cao, H.; Qiu, X.; Liang, Y.; Zhu, Q.; Zhao, M. Room-temperature ultraviolet-emitting In2O3 nanowires. Appl. Phys. Lett. 2003, 83, 761–763. [Google Scholar] [CrossRef]
- Mazouchi, M.; Sarkar, K.; Purahmad, M.; Farid, S.; Dutta, M. Photoconduction mechanism of ultra-long indium oxide nanowires. Solid-State Electron. 2018, 148, 58–62. [Google Scholar] [CrossRef]
- Gali, P.; Kuo, F.-L.; Shepherd, N.; Philipose, U. Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires. Semicond Sci. Technol. 2011, 27, 15015. [Google Scholar] [CrossRef]
- Wacaser, B.A.; Dick, K.A.; Johansson, J.; Borgström, M.T.; Deppert, K.; Samuelson, L. Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires. Adv. Mater. 2009, 21, 153–165. [Google Scholar] [CrossRef]
- Wei, Z.P.; Guo, D.L.; Liu, B.; Chen, R.; Wong, L.M.; Yang, W.; Wang, S.J.; Sun, H.; Wu, T. Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires. Appl. Phys. Lett. 2010, 96, 031902. [Google Scholar] [CrossRef]
- Singh, N.; Ponzoni, A.; Gupta, R.K.; Lee, P.S.; Comini, E. Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sens. Actuators B Chem. 2011, 160, 1346–1351. [Google Scholar] [CrossRef]
- Gu, W.; Choi, H.; Kim, K. (Kevin) Universal approach to accurate resistivity measurement for a single nanowire: Theory and application. Appl. Phys. Lett. 2006, 89, 253102. [Google Scholar] [CrossRef]
- Jean, S.T.; Her, Y.C. Growth Mechanism and Photoluminescence Properties of In2O3 Nanotowers. Cryst. Growth Des. 2010, 10, 2104–2110. [Google Scholar] [CrossRef]
- Singh, N.; Zhang, T.; Lee, P.S. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods. Nanotechnology 2009, 20, 195605. [Google Scholar] [CrossRef]
- Hernandez, J.A.; Carpena-Nunez, J.; Fonseca, L.F.; Pettes, M.T.; Yacaman, M.J.; Benitez, A. Thermoelectric properties and thermal tolerance of indium tin oxide nanowires. Nanotechnology 2018, 29, 364001. [Google Scholar] [CrossRef] [Green Version]
- Bierwagen, O.; Speck, J.S. Mg acceptor doping of In2O3 and overcompensation by oxygen vacancies. Appl. Phys. Lett. 2012, 101, 102. [Google Scholar] [CrossRef]
- Sailer, R.; Wagner, A.; Schmit, C.; Klaverkamp, N.; Schulz, D.L. Deposition of transparent conductive indium oxide by atmospheric-pressure plasma jet. Surf. Coat. Technol. 2008, 203, 835–838. [Google Scholar] [CrossRef]
- Manoj, P.; Gopchandran, K.; Koshy, P.; Vaidyan, V.; Joseph, B.; Gopchandran, K.G. Growth and characterization of indium oxide thin films prepared by spray pyrolysis. Opt. Mater. 2006, 28, 1405–1411. [Google Scholar] [CrossRef]
- Prathap, P.; Devi, G.G.; Subbaiah, Y.; Reddy, K.R.; Ganesan, V. Growth and characterization of indium oxide films. Curr. Appl. Phys. 2008, 8, 120–127. [Google Scholar] [CrossRef]
- Wan, Q.; Dattoli, E.N.; Fung, W.Y.; Guo, W.; Chen, Y.; Pan, X.; Lu, W.D. High-Performance Transparent Conducting Oxide Nanowires. Nano Lett. 2006, 6, 2909–2915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, G.; Yanagida, T.; Nagashima, K.; Yoshida, H.; Kanai, M.; Klamchuen, A.; Zhuge, F.; He, Y.; Rahong, S.; Fang, X.; et al. Impact of Preferential Indium Nucleation on Electrical Conductivity of Vapor–Liquid–Solid Grown Indium–Tin Oxide Nanowires. J. Am. Chem. Soc. 2013, 135, 7033–7038. [Google Scholar] [CrossRef]
- Ho, C.-H.; Chan, C.-H.; Tien, L.-C.; Huang, Y. Direct Optical Observation of Band-Edge Excitons, Band Gap, and Fermi Level in Degenerate Semiconducting Oxide Nanowires In2O3. J. Phys. Chem. C 2011, 115, 25088–25096. [Google Scholar] [CrossRef]
- Yadav, K.; Mehta, B.R.; Lakshmi, K.; Bhattacharya, S.; Singh, J.P. Tuning the Wettability of Indium Oxide Nanowires from Superhydrophobic to Nearly Superhydrophilic: Effect of Oxygen-Related Defects. J. Phys. Chem. C 2015, 119, 16026–16032. [Google Scholar] [CrossRef]
- Zhou, H.; Cai, W.; Zhang, L. Photoluminescence of indium–oxide nanoparticles dispersed within pores of mesoporous silica. Appl. Phys. Lett. 1999, 75, 495–497. [Google Scholar] [CrossRef]
- Arooj, S.; Xu, T.; Hou, X.; Wang, Y.; Tong, J.; Chu, R.; Liu, B. Green emission of indium oxide via hydrogen treatment. RSC Adv. 2018, 8, 11828–11833. [Google Scholar] [CrossRef] [Green Version]
- Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O.I.; Van Tendeloo, G.; Moshchalkov, V.V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 2008, 3, 174. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-Y.; Yang, S.-M.; Lu, K.-C. Synthesis of High-Density Indium Oxide Nanowires with Low Electrical Resistivity. Nanomaterials 2020, 10, 2100. https://doi.org/10.3390/nano10112100
Chen Y-Y, Yang S-M, Lu K-C. Synthesis of High-Density Indium Oxide Nanowires with Low Electrical Resistivity. Nanomaterials. 2020; 10(11):2100. https://doi.org/10.3390/nano10112100
Chicago/Turabian StyleChen, Yu-Yang, Shu-Meng Yang, and Kuo-Chang Lu. 2020. "Synthesis of High-Density Indium Oxide Nanowires with Low Electrical Resistivity" Nanomaterials 10, no. 11: 2100. https://doi.org/10.3390/nano10112100
APA StyleChen, Y. -Y., Yang, S. -M., & Lu, K. -C. (2020). Synthesis of High-Density Indium Oxide Nanowires with Low Electrical Resistivity. Nanomaterials, 10(11), 2100. https://doi.org/10.3390/nano10112100