Graphene-Based One-Dimensional Terahertz Phononic Crystal: Band Structures and Surface Modes
Abstract
:1. Introduction
2. Green’s Function of an Infinite Superlattice
3. Green’s Function of a Semi-Infinite Superlattice
4. Densities of States
4.1. Local Density of States
4.2. Total Density of States
5. Numerical Calculations of Dispersion Curves, Surface Modes, and Densities of States
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622–634. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; Brien, S.C.O.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Novoselov, K.S.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar]
- Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Novoselov, K.S.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197. [Google Scholar]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Sarma, S.D.; Geim, A.K.; Kim, P.; MacDonald, A.H. Exploring graphene Recent research advances. Solid State Commun. 2007, 143, 1–126. [Google Scholar]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Yazyev, O.V.; Louie, S.G. Electronic transport in polycrystalline graphene. Nat. Mater. 2010, 9, 806–809. [Google Scholar] [CrossRef] [Green Version]
- Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; Wees, B.J.V. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Qin, G.; Hu, M. Origin of anisotropic negative Poisson’s ratio in graphene. Nanoscale 2018, 10, 10365. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef] [Green Version]
- Kuzmenko, A.B.; van Heumen, E.; Carbone, F.; van der Marel, D. Universal Optical Conductance of Graphite. Phys. Rev. Lett. 2008, 100, 117401–117404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Nika, D.L.; Balandin, A.A. Thermal properties of graphene and few-layer graphene: Applications in electronics. IET Circuits Devices Syst. 2015, 9, 4–12. [Google Scholar] [CrossRef]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.M.; Dimitrakopoulos, C.; Jenkins, K.A.; Farmer, D.B.; Chiu, H.Y.; Grill, A.; Avouris, P. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 2010, 327, 662. [Google Scholar] [CrossRef] [Green Version]
- Stampfer, C.; Schurtenberger, E.; Molitor, F.; Güttinger, J.; Ihn, T.; Ensslin, K. Tunable Graphene Single Electron Transistor. Nano Lett. 2008, 8, 2378–2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Hogan, H. Fabricating Photonic Quantum Circuits in Silicon. Photonics Spectra 2008, 42, 17–19. [Google Scholar]
- Xu, W.; Gong, Y.P.; Liu, L.W.; Qin, H.; Shi, Y.L. Can graphene make better HgCdTe infrared detectors? Nanoscale Res. Lett. 2011, 6, 250. [Google Scholar] [CrossRef] [Green Version]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Zeng, S.; Yong, K.-T.; Yu, T. Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B 2013, 182, 424–428. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Wang, B.; Ruan, T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D.; Dou, S. Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 2020, 24, 22–51. [Google Scholar] [CrossRef]
- Chen, S.-C.; Kraft, R.; Danneau, R.; Richter, K.; Liu, M.-H. Electrostatic superlattices on scaled graphene lattices. Communic. Phys. 2020, 71, 1–7. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Zeng, S.; Shang, J.; Yong, K.-T.; Yu, T. Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Sci. Rep. 2012, 737, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Wei, Z.; Li, H.; Chen, H.; Soukoulis, C.M. Photonic band gap of a graphene-embedded quarter-wave stack. Phys. Rev. B 2013, 88, 241403. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Liu, C. Complex band structures of 1D anisotropic graphene photonic crystal. Photonics Res. 2017, 5, 544. [Google Scholar] [CrossRef]
- Smirnova, D.; Buslaev, P.; Iorsh, I.; Shadrivov, I.V.; Belov, P.A.; Kivshar, Y.S. Deeply subwavelength electromagnetic Tamm states in graphene metamaterials. Phys. Rev. B 2014, 89, 245414. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.C.; Zhu, Z.H.; Yuan, X.D.; Ye, W.M.; Liu, K.; Zhang, J.F.; Xu, W.; Qin, S.Q. Experimental Demonstration of Total Absorption over 99% in the Near Infrared for Monolayer-Graphene?Based Subwavelength Structures. Adv. Opt. Mater. 2016, 4, 1955. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, H.; Zhang, B.Y.; Zhang, Y.; Zheng, X.; Yu, A.; Hong, M.; Jia, B. Graphene-Based Multilayered Metamaterials with Phototunable Architecture for on-Chip Photonic Devices. ACS Photonics 2019, 6, 1033. [Google Scholar] [CrossRef]
- Dobrzynski, L.; El Boudouti, E.H.; Akjouj, A.; Pennec, Y.; Al-Wahsh, H.; Lévêque, G.; Djafari-Rouhani, B. Phononics, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Jusserand, B.; Cardona, M. Light Scattering in Solids V: Superlattices and Other Microstructures; Springer: Berlin/Heidelberg, Germany, 1989; pp. 49–152. [Google Scholar]
- Sapriel, J.; Djafari-Rouhani, B. Vibrations in superlattices. Surf. Sci. Rep. 1989, 10, 189. [Google Scholar] [CrossRef]
- Narayanamurti, V. Phonon Optics and Phonon Propagation in Semiconductors. Science 1981, 213, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.; Liaqat, F.; El Boudouti, E.H.; El Hassouani, Y.; Djafari-Rouhani, B.; Tremel, W.; Butt, H.-J.; Fytas, G. Engineering the Hypersonic Phononic Band Gap of Hybrid Bragg Stacks. Nano Lett. 2012, 12, 3101–3108. [Google Scholar] [CrossRef]
- Schneider, D.; Liaqat, F.; Abouti, O.E.; El Boudouti, E.H.; Tremel, W.; Butt, H.-J.; Djafari-Rouhani, B.; Fytas, G. Defect-Controlled Hypersound Propagation in Hybrid Superlattices. Phys. Rev. Lett. 2013, 111, 164301. [Google Scholar] [CrossRef]
- Beardsley, R.P.; Akimov, A.V.; Henini, M.; Kent, A.J. Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice. Phys. Rev. Lett. 2010, 104, 085501. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.R.; Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E.; et al. Experimental review of graphene. Condens. Matter Phys. 2012, 2012, 501686. [Google Scholar] [CrossRef] [Green Version]
- El Boudouti, E.H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzyski, L. Acoustic waves in solid and fluid layered materials. Surf. Sci. Rep. 2009, 64, 471–594. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, W.; Peeters, F.M. Transmission of Terahertz Acoustic Waves through Graphene-Semiconductor Layered Structures. Graphene 2014, 3, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Korozlu, N.; Kaya, O.A.; Cicek, A.; Ulug, B. Acoustic Tamm states of three-dimensional solid-fluid phononic crystals. J. Acoust. Soc. Am. 2018, 143, 756. [Google Scholar] [CrossRef]
- Nougaoui, A.; Djafari-Rouhani, B. Elastic waves in periodically layered infinite and semi-infinite anisotropic media. Surf. Sci. 1987, 185, 125–153. [Google Scholar] [CrossRef]
- Bosak, A.; Krisch, M.; Mohr, M.; Maultzsch, J.; Thomsen, C. Elasticity of single-crystalline graphite: Inelastic x-ray scattering study. Phys. Rev. B 2007, 75, 153408. [Google Scholar] [CrossRef] [Green Version]
- El Boudouti, E.H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzyski, L. Surface and interface elastic waves in superlattices: Transverse localized and resonant modes. Phys. Rev. B 1993, 48, 10987. [Google Scholar] [CrossRef]
- El Boudouti, E.H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzyski, L. Theory of surface and interface transverse elastic waves in N-layer superlattices. Phys. Rev. B 1996, 54, 14728. [Google Scholar] [CrossRef]
- Ruf, T.; Belitsky, V.I.; Spitzer, J.; Sapega, V.F.; Cardona, M.; Ploog, K. Raman scattering from folded phonon dispersion gaps. Phys. Rev. Lett. 1993, 71, 3035. [Google Scholar] [CrossRef]
- Lemos, V.; Pilla, O.; Montagna, M.; de Souza, C.F. Observation of acoustic modes inside the phonon dispersion gaps. Superlatt. Microstruct. 1995, 17, 51. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Liu, C.-H.; Liu, A.-H.; Zhang, S.; Marder, S.R.; Narimanov, E.E.; Zhong, Z.; Norris, T.B. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 2016, 7, 10568. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W. Image of the Fermi Surface in the Vibration Spectrum of a Metal. Phys. Rev. Lett. 1959, 2, 393. [Google Scholar] [CrossRef]
- Renker, B.; Rietschel, H.; Pintschovius, L.; Gläser, W.; Brüesch, P.; Kuse, D.; Rice, M.J. Observation of Giant Kohn Anomaly in the One-Dimensional Conductor. Phys. Rev. Lett. 1973, 30, 1144. [Google Scholar] [CrossRef]
- Taleb, A.A.; Farias, D. Phonon dynamics of graphene on metals. J. Phys. Condens. Matter 2016, 28, 103005. [Google Scholar] [CrossRef]
- Cifuentes-Quintal, M.E.; Peña-Seaman, O.D.; Heid, R.; Coss, R.D.; Bohnen, K.-P. Uniaxial strain-induced Kohn anomaly and electron-phonon coupling in acoustic phonons of graphene. Phys. Rev. B 2016, 94, 085401. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Du, L.; Yang, W.; Shen, C.; Tang, J.; Li, X.; Chu, Y.; Tian, J.; Watanabe, K.; Taniguchi, T.; et al. Observation of logarithmic Kohn anomaly in monolayer graphene. Phys. Rev. B 2020, 102, 165415. [Google Scholar] [CrossRef]
- Chakraborty, S.; Uchiyama, H.; Garbrecht, M.; Bhatia, V.; Pillai, A.I.K.; Feser, J.P.; Adroja, D.T.; Langridge, S.; Saha, B. Phononic bandgap and phonon anomalies in HfN and HfN/ScN metal/semiconductor superlattices measured with inelastic x-ray scattering. Appl. Phys. Lett. 2020, 117, 111901. [Google Scholar] [CrossRef]
Si | 165.77 | 63.93 | 63.93 | 165.77 | 79.62 | 2330 |
Graphene | 1109 | 139 | 0 | 38.7 | 5 | 1940 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quotane, I.; El Boudouti, E.H.; Djafari-Rouhani, B. Graphene-Based One-Dimensional Terahertz Phononic Crystal: Band Structures and Surface Modes. Nanomaterials 2020, 10, 2205. https://doi.org/10.3390/nano10112205
Quotane I, El Boudouti EH, Djafari-Rouhani B. Graphene-Based One-Dimensional Terahertz Phononic Crystal: Band Structures and Surface Modes. Nanomaterials. 2020; 10(11):2205. https://doi.org/10.3390/nano10112205
Chicago/Turabian StyleQuotane, Ilyasse, El Houssaine El Boudouti, and Bahram Djafari-Rouhani. 2020. "Graphene-Based One-Dimensional Terahertz Phononic Crystal: Band Structures and Surface Modes" Nanomaterials 10, no. 11: 2205. https://doi.org/10.3390/nano10112205
APA StyleQuotane, I., El Boudouti, E. H., & Djafari-Rouhani, B. (2020). Graphene-Based One-Dimensional Terahertz Phononic Crystal: Band Structures and Surface Modes. Nanomaterials, 10(11), 2205. https://doi.org/10.3390/nano10112205