Full-Color Realization of Micro-LED Displays
Abstract
:1. Introduction
2. Chip Transfer and Bonding
2.1. Horisontally and Vertically Stacked Micro-LED Structures
2.2. Elastomer Stamp Transfer
2.3. Laser-Induced Transfer
2.4. Fluidically Self-Assembled Transfer
2.5. Electrostatic Transfer
2.6. Roll-to-Roll or Roll-to-Panel Imprinting Transfer
2.7. Summary
3. Color Conversion Technology
3.1. Phosphor Color Conversion LEDs
3.2. Quantum Dot Color Conversion LEDs
3.3. Other Color Conversion Technologies
3.4. Summary
4. Monolithic Multi-Color Growth Technology
4.1. Growth Buffer Technology
4.2. Monolithic Wavelength Tunable MQW Micro-LEDs
4.3. Monolithic Wavelength Tunable Nanowire LED
4.4. Monolithic Integrated Nano-Ring Micro-LED Array
4.5. Summary
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jang, H.J.; Lee, J.Y.; Kwak, J.; Lee, D.; Park, J.-H.; Lee, B.; Noh, Y.Y. Progress of display performances: AR, VR, QLED, OLED, and TFT. J. Inf. Disp. 2019, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Shao, Y.-F. A brief review of innovative strategies towards structure design of practical electronic display device. J. Cent. South Univ. 2020, 27, 1624–1644. [Google Scholar] [CrossRef]
- Wu, T.; Sher, C.-W.; Lin, Y.; Lee, C.-F.; Liang, S.; Lu, Y.; Huang Chen, S.-W.; Guo, W.; Kuo, H.-C.; Chen, Z. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.-L.; Kuo, W.-H.; Shen, H.-T.; Yu, P.-W.; Fang, Y.-H.; Lin, C.-C. Advances in color-converted micro-LED arrays. Jpn. J. Appl. Phys. 2020, 60, SA0802. [Google Scholar] [CrossRef]
- Tan, G.; Huang, Y.; Li, M.-C.; Lee, S.-L.; Wu, S.-T. High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express 2018, 26, 16572–16584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Qiao, M.; Li, H.; Mu, L. 7.3: Research on LCD display performance improvement based on mini-LED backlight. SID Symp. Dig. Techn. Pap. 2019, 50, 61–64. [Google Scholar] [CrossRef]
- Woodgate, G.J.; Harrold, J. P-101: Micro-Optical Systems for micro-LED Displays. SID Symp. Dig. Techn. Pap. 2018, 49, 1559–1562. [Google Scholar] [CrossRef]
- Poher, V.; Grossman, N.; Kennedy, G.; Nikolic, K.; Zhang, H.; Gong, Z.; Drakakis, E.; Gu, E.; Dawson, M.; French, P. micro-LED arrays: A tool for two-dimensional neuron stimulation. J. Phys. D Appl. Phys. 2008, 41, 094014. [Google Scholar] [CrossRef]
- Grossman, N.; Poher, V.; Grubb, M.S.; Kennedy, G.T.; Nikolic, K.; McGovern, B.; Palmini, R.B.; Gong, Z.; Drakakis, E.M.; Neil, M.A. Multi-site optical excitation using ChR2 and micro-LED array. J. Neural Eng. 2010, 7, 016004. [Google Scholar] [CrossRef]
- Zheng, L.; Guo, Z.; Yan, W.; Lin, Y.; Lu, Y.; Kuo, H.-C.; Chen, Z.; Zhu, L.; Wu, T.; Gao, Y. Research on a camera-based microscopic imaging system to inspect the surface luminance of the micro-LED array. IEEE Access 2018, 6, 51329–51336. [Google Scholar] [CrossRef]
- Radauscher, E.J.; Meitl, M.; Prevatte, C.; Bonafede, S.; Rotzoll, R.; Gomez, D.; Moore, T.; Raymond, B.; Cok, R.; Fecioru, A. Miniaturized LEDs for flat-panel displays. In Proceedings Volume 10124 Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XXI; International Society for Optics and Photonics: San Francisco, CA, USA, 2017; p. 1012418. [Google Scholar]
- Xu, H.; Zhang, J.; Davitt, K.; Song, Y.; Nurmikko, A. Application of blue–green and ultraviolet micro-LEDs to biological imaging and detection. J. Phys. D Appl. Phys. 2008, 41, 094013. [Google Scholar] [CrossRef] [Green Version]
- Goßler, C.; Bierbrauer, C.; Moser, R.; Kunzer, M.; Holc, K.; Pletschen, W.; Köhler, K.; Wagner, J.; Schwaerzle, M.; Ruther, P. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J. Phys. D Appl. Phys. 2014, 47, 205401. [Google Scholar] [CrossRef]
- Chun, H.; Rajbhandari, S.; Faulkner, G.; Tsonev, D.; Xie, E.; McKendry, J.J.D.; Gu, E.; Dawson, M.D.; O’Brien, D.C.; Haas, H. LED based wavelength division multiplexed 10 Gb/s visible light communications. J. Lightwave Technol. 2016, 34, 3047–3052. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhu, S.; Wu, C.; Yang, C.; Yu, Z.; Yang, H.; Liu, L. GaN-based LEDs for light communication. Sci. China Phys. Mech. Astron. 2016, 59, 107301. [Google Scholar] [CrossRef]
- McKendry, J.J.; Green, R.P.; Kelly, A.; Gong, Z.; Guilhabert, B.; Massoubre, D.; Gu, E.; Dawson, M.D. High-speed visible light communications using individual pixels in a micro light-emitting diode array. IEEE Photonics Technol. Lett. 2010, 22, 1346–1348. [Google Scholar] [CrossRef]
- Rajbhandari, S.; McKendry, J.J.; Herrnsdorf, J.; Chun, H.; Faulkner, G.; Haas, H.; Watson, I.M.; O’Brien, D.; Dawson, M.D. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol. 2017, 32, 023001. [Google Scholar] [CrossRef]
- Paranjpe, A.; Montgomery, J.; Lee, S.M.; Morath, C. 45-2: Invited Paper: Micro-LED Displays: Key Manufacturing Challenges and Solutions. SID Symp. Dig. Techn. Pap. 2018, 49, 597–600. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, G.; Gou, F.; Li, M.C.; Lee, S.L.; Wu, S.T. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 387–401. [Google Scholar] [CrossRef]
- Virey, E.H.; Baron, N.; Bouhamri, Z. 11-3: Overlooked Challenges for microLED Displays. SID Symp. Dig. Techn. Pap. 2019, 50, 129–132. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, J.; Jiang, H. III-nitride micro-emitter arrays: Development and applications. J. Phys. D Appl. Phys. 2008, 41, 094001. [Google Scholar] [CrossRef]
- Jiang, H.; Lin, J. Nitride micro-LEDs and beyond-a decade progress review. Opt. Express 2013, 21, A475–A484. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.W.; Twu, N.; Kymissis, I. micro-LED technologies and applications. Inf. Disp. 2016, 32, 16–23. [Google Scholar] [CrossRef]
- Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. micro-LEDs, a manufacturability perspective. Appl. Sci. 2019, 9, 1206. [Google Scholar] [CrossRef] [Green Version]
- Tong, C.; Liu, X.; Li, W.; Liu, Z. P-6.7: Investigation of Full-Color Solutions for micro-LED Display. SID Symp. Dig. Techn. Pap. 2019, 50, 771–774. [Google Scholar] [CrossRef]
- Huang, Y.; Hsiang, E.-L.; Deng, M.-Y.; Wu, S.-T. Mini-LED, micro-LED and OLED displays: Present status and future perspectives. Light Sci. Appl. 2020, 9, 1–16. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, P.; Sher, C.-W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H.-C. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 2020, 71, 100263. [Google Scholar] [CrossRef]
- Wang, Z.; Shan, X.; Cui, X.; Tian, P. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display. J. Semicond. 2020, 41, 041606. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, K.; Chao, V.S.-D.; Mo, W.; Lau, K.M.; Liu, Z. Full-color pixelated-addressable light emitting diode on transparent substrate (LEDoTS) micro-displays by CoB. J. Disp. Technol. 2016, 12, 742–746. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, K.; Liu, Z. Design and fabrication of fine-pitch pixelated-addressed micro-LED arrays on printed circuit board for display and communication applications. IEEE J. Electron Devices Soc. 2016, 5, 90–94. [Google Scholar] [CrossRef]
- Cheung, Y.; Choi, H. Color-tunable and phosphor-free white-light multilayered light-emitting diodes. IEEE Trans. Electron Devices 2012, 60, 333–338. [Google Scholar] [CrossRef]
- Hui, K.; Wang, X.; Li, Z.; Lai, P.; Choi, H. Design of vertically-stacked polychromatic light-emitting diodes. Opt. Express 2009, 17, 9873–9878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, C.-M.; Kong, D.-J.; Shim, J.-P.; Kim, S.; Choi, S.-B.; Lee, J.-Y.; Min, J.-H.; Seo, D.-J.; Choi, S.-Y.; Lee, D.-S. Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display. Opt. Express 2017, 25, 2489–2495. [Google Scholar] [CrossRef] [PubMed]
- Yadavalli, K.; Chuang, C.-L.; El-Ghoroury, H.S. Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications. In Proceedings Volume 11310, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR); International Society for Optics and Photonics: San Francisco, CA, USA, 2020; p. 11310Z. [Google Scholar]
- Park, S.-I.; Xiong, Y.; Kim, R.-H.; Elvikis, P.; Meitl, M.; Kim, D.-H.; Wu, J.; Yoon, J.; Yu, C.-J.; Liu, Z. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cok, R.S.; Meitl, M.; Rotzoll, R.; Melnik, G.; Fecioru, A.; Trindade, A.J.; Raymond, B.; Bonafede, S.; Gomez, D.; Moore, T. Inorganic light-emitting diode displays using micro-transfer printing. J. Soc. Inf. Disp. 2017, 25, 589–609. [Google Scholar] [CrossRef]
- Meitl, M.A.; Zhu, Z.-T.; Kumar, V.; Lee, K.J.; Feng, X.; Huang, Y.Y.; Adesida, I.; Nuzzo, R.G.; Rogers, J.A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38. [Google Scholar] [CrossRef]
- Corbett, B.; Loi, R.; Zhou, W.; Liu, D.; Ma, Z. Transfer print techniques for heterogeneous integration of photonic components. Prog. Quantum Electron. 2017, 52, 1–17. [Google Scholar] [CrossRef]
- Lee, K.J.; Motala, M.J.; Meitl, M.A.; Childs, W.R.; Menard, E.; Shim, A.K.; Rogers, J.A.; Nuzzo, R.G. Large-Area, Selective Transfer of microstructured Silicon: A Printing-Based Approach to High-Performance Thin-Film Transistors Supported on Flexible Substrates. Adv. Mater. 2005, 17, 2332–2336. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, B.-C.; Lim, D.-W.; Shin, B.-C. Control of adhesion force for micro LED transfer using a magnetorheological elastomer. J. Mech. Sci. Technol. 2019, 33, 5321–5325. [Google Scholar] [CrossRef]
- Lu, H.; Guo, W.; Su, C.; Li, X.; Lu, Y.; Chen, Z.; Zhu, L. Optimization on adhesive stamp Mass-transfer of micro-LEDs with support vector machine model. IEEE J. Electron Devices Soc. 2020, 8, 554–558. [Google Scholar] [CrossRef]
- Fernández-Pradas, J.M.; Serra, P. Laser-Induced Forward Transfer: A Method for Printing Functional Inks. Crystals 2020, 10, 651. [Google Scholar] [CrossRef]
- Delaporte, P.; Alloncle, A.-P. Laser-induced forward transfer: A high resolution additive manufacturing technology. Opt. Laser Technol. 2016, 78, 33–41. [Google Scholar] [CrossRef]
- Marinov, V.R. 52-4: Laser-Enabled Extremely-High Rate Technology for µLED Assembly. SID Symp. Dig. Techn. Pap. 2018, 49, 692–695. [Google Scholar] [CrossRef]
- Yeh, H.-J.; Smith, J.S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photonics Technol. Lett. 1994, 6, 706–708. [Google Scholar] [CrossRef]
- Talghader, J.J.; Tu, J.K.; Smith, J.S. Integration of fluidically self-assembled optoelectronic devices using a silicon-based process. IEEE Photonics Technol. Lett. 1995, 7, 1321–1323. [Google Scholar] [CrossRef]
- Bibl, A.; Higginson, J.A.; Law, H.-f.S.; Hu, H.-H. Method of Transferring a Micro Device. U.S. Patent 8,333,860, 18 December 2012. [Google Scholar]
- Saeedi, E.; Kim, S.S.; Parviz, B.A. Self-assembled inorganic micro-display on plastic. In Proceedings of the 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Hyogo, Japan, 21–25 January 2007; pp. 755–758. [Google Scholar]
- Ahn, S.H.; Guo, L.J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano 2009, 3, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.K.; Jang, B.; Lee, J.E.; Bae, S.H.; Kim, T.W.; Lee, H.J.; Kim, J.H.; Ahn, J.H. Load-controlled roll transfer of oxide transistors for stretchable electronics. Adv. Funct. Mater. 2013, 23, 2024–2032. [Google Scholar] [CrossRef]
- Choi, M.; Jang, B.; Lee, W.; Lee, S.; Kim, T.W.; Lee, H.J.; Kim, J.H.; Ahn, J.H. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv. Funct. Mater. 2017, 27, 1606005. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, X.; Qu, S.; Liang, D.; Xu, J. P-8.9: Full-color GaN-based LED micro-display Integrated with Dynamic Color Filter. SID Symp. Dig. Techn. Pap. 2019, 50, 852–855. [Google Scholar] [CrossRef]
- McKittrick, J.; Shea-Rohwer, L.E. down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 2014, 97, 1327–1352. [Google Scholar] [CrossRef]
- Tao, T.; Zhi, T.; Cen, X.; Liu, B.; Wang, Q.; Xie, Z.; Chen, P.; Chen, D.; Zhou, Y.; Zheng, Y. Hybrid cyan nitride/red phosphors white light-emitting diodes with micro-hole structures. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wong, K.M.; Chong, W.C.; Lau, K.M. P-34: Active Matrix Programmable Monolithic Light Emitting Diodes on Silicon (LEDoS) Displays. SID Symp. Dig. Techn. Pap. 2011, 42, 1215–1218. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.M.; Liu, Z. Monolithic Full-Color LED Micro-Display on an Active Matrix Panel Manufactured Using Flip-Chip Technology. U.S. Patent 8,642,363, 4 February 2014. [Google Scholar]
- Chen, D.-C.; Liu, Z.-G.; Deng, Z.-H.; Wang, C.; Cao, Y.-G.; Liu, Q.-L. Optimization of light efficacy and angular color uniformity by hybrid phosphor particle size for white light-emitting diode. Rare Met. 2014, 33, 348–352. [Google Scholar] [CrossRef]
- Han, J.; Choi, J.; Piquette, A.; Hannah, M.; Anc, M.; Galvez, M.; Talbot, J.; McKittrick, J. Phosphor development and integration for near-UV LED solid state lighting. ECS J. Solid State Sci. Technol. 2012, 2, R3138. [Google Scholar] [CrossRef]
- Li, H.; Li, P.; Kang, J.; Ding, J.; Ma, J.; Zhang, Y.; Yi, X.; Wang, G. Broadband full-color monolithic InGaN light-emitting diodes by self-assembled InGaN quantum dots. Sci. Rep. 2016, 6, 35217. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Lee, K.-H.; Yoon, H.C.; Yang, H.; Do, Y.R. Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors. Opt. Express 2014, 22, A511–A520. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Kim, S.-Y.; Jung, J.-H.; Shin, S.-Y. High-quality Imaging micro-LED Display based on Quantum Dot CSP Technology. Electron. Imaging 2018, 2018, 185-1–185-5. [Google Scholar] [CrossRef]
- Shangguan, Z.; Zheng, X.; Zhang, J.; Lin, W.; Guo, W.; Li, C.; Wu, T.; Lin, Y.; Chen, Z. The Stability of Metal Halide Perovskite Nanocrystals—A Key Issue for the Application on Quantum-Dot-Based micro Light-Emitting Diodes Display. Nanomaterials 2020, 10, 1375. [Google Scholar] [CrossRef]
- Jang, E. Perspectives on the environmentally friendly InP-based quantum dots for display applications. In Proceedings of the Organic and Hybrid Light Emitting Materials and Devices XXIV, San Diego, CA, USA, 1–5 August 2021; p. 114731B. [Google Scholar]
- Yin, Y.; Hu, Z.; Ali, M.U.; Duan, M.; Gao, L.; Liu, M.; Peng, W.; Geng, J.; Pan, S.; Wu, Y. Full-Color micro-LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers. Adv. Mater. Technol. 2020, 2000251. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, C.-H.; Hyun, B.-R.; Sher, C.-W.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.-H.; Kuo, H.-C. micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 2020, 9, 1–23. [Google Scholar] [CrossRef]
- Xie, B.; Hu, R.; Luo, X. Quantum dots-converted light-emitting diodes packaging for lighting and display: Status and perspectives. J. Electron. Packag. 2016, 138, 020803. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Bardecker, J.A.; Munro, A.M.; Liu, M.S.; Niu, Y.; Ding, I.-K.; Luo, J.; Chen, B.; Jen, A.K.-Y.; Ginger, D.S. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 2006, 6, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Rudorfer, A.; Tscherner, M.; Palfinger, C.; Reil, F.; Hartmann, P.; Seferis, I.E.; Zych, E.; Wenzl, F.P. A study on Aerosol jet printing technology in LED module manufacturing. In Proceedings of the Fifteenth International Conference on Solid State Lighting and LED-Based Illumination Systems, San Diego, CA, USA, 31 August 2016; p. 99540E. [Google Scholar]
- Mei, W.; Zhang, Z.; Zhang, A.; Li, D.; Zhang, X.; Wang, H.; Chen, Z.; Li, Y.; Li, X.; Xu, X. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491. [Google Scholar] [CrossRef]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet printing—Process and its applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef]
- Han, H.-V.; Lin, H.-Y.; Lin, C.-C.; Chong, W.-C.; Li, J.-R.; Chen, K.-J.; Yu, P.; Chen, T.-M.; Chen, H.-M.; Lau, K.-M. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express 2015, 23, 32504–32515. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.J.; Chen, H.C.; Tsai, K.A.; Lin, C.C.; Tsai, H.H.; Chien, S.H.; Cheng, B.S.; Hsu, Y.J.; Shih, M.H.; Tsai, C.H. Resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method. Adv. Funct. Mater. 2012, 22, 5138–5143. [Google Scholar] [CrossRef]
- Leitao, M.F.; Santos, J.M.; Guilhabert, B.; Watson, S.; Kelly, A.E.; Islim, M.S.; Haas, H.; Dawson, M.D.; Laurand, N. Gb/s visible light communications with colloidal quantum dot color converters. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rae, K.; Foucher, C.; Guilhabert, B.; Islim, M.S.; Yin, L.; Zhu, D.; Oliver, R.; Wallis, D.; Haas, H.; Laurand, N. InGaN µLEDs integrated onto colloidal quantum dot functionalized ultra-thin glass. Opt. Express 2017, 25, 19179–19184. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Wang, Y.; Tian, P.; Jing, P.; Sun, M.; Chen, X.; Xu, X.; Li, D.; Mei, S.; Liu, X. microwave-assisted heating method toward multicolor quantum dot-based phosphors with much improved luminescence. ACS Appl. Mater. Interfaces 2018, 10, 27160–27170. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Sher, C.-W.; Hsieh, D.-H.; Chen, X.-Y.; Chen, H.-M.P.; Chen, T.-M.; Lau, K.-M.; Chen, C.-H.; Lin, C.-C.; Kuo, H.-C. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Res. 2017, 5, 411–416. [Google Scholar] [CrossRef]
- Hines, D.A.; Becker, M.A.; Kamat, P.V. Photoinduced surface oxidation and its effect on the exciton dynamics of CdSe quantum dots. J. Phys. Chem. C 2012, 116, 13452–13457. [Google Scholar] [CrossRef]
- Park, H.C.; Gong, S.; Cho, Y.H. How Effective is Plasmonic Enhancement of Colloidal Quantum Dots for Color-Conversion Light-Emitting Devices? Small 2017, 13, 1701805. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-J.; Hsu, H.-C.; Yeh, C.-W.; Chen, H.-S. Inkjet-Printed Salt-Encapsulated Quantum Dot Film for UV-based RGB Color-converted micro-Light Emitting Diode Displays. ACS Appl. Mater. Interfaces 2020, 12, 33346–33351. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Yang, H.; Zhao, B.; Zhang, X.; Li, X.; Xu, B.; Wei, F.; Liu, Z.; Wang, K.; Sun, X.W. 4-4: Flexible Quantum Dot Color Converter Film for micro-LED Applications. SID Symp. Dig. Techn. Pap. 2019, 50, 30–33. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Huang, Y.-M.; Singh, K.J.; Hsu, Y.-C.; Liou, F.-J.; Song, J.; Choi, J.; Lee, P.-T.; Lin, C.-C.; Chen, Z. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Res. 2020, 8, 630–636. [Google Scholar] [CrossRef]
- Chen, G.-S.; Wei, B.-Y.; Lee, C.-T.; Lee, H.-Y. Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photonics Technol. Lett. 2017, 30, 262–265. [Google Scholar] [CrossRef]
- Gou, F.; Hsiang, E.-L.; Tan, G.; Lan, Y.-F.; Tsai, C.-Y.; Wu, S.-T. Tripling the optical efficiency of color-converted micro-LED displays with funnel-tube array. Crystals 2019, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Gou, F.; Hsiang, E.L.; Tan, G.; Lan, Y.F.; Tsai, C.Y.; Wu, S.T. High performance color-converted micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 199–206. [Google Scholar] [CrossRef]
- Kang, J.-H.; Li, B.; Zhao, T.; Johar, M.A.; Lin, C.-C.; Fang, Y.-H.; Kuo, W.-H.; Liang, K.-L.; Hu, S.; Ryu, S.-W. RGB arrays for micro-LED applications using nanoporous GaN embedded with quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 30890–30895. [Google Scholar] [CrossRef]
- Kang, J.-H.; Han, J. 65-2: Invited Paper: Enabling Technology for microLED Display Based on Quantum Dot Color Converter. SID Symp. Dig. Techn. Pap. 2019, 50, 914–916. [Google Scholar] [CrossRef]
- Liu, Z.J.; Chong, W.C.; Wong, K.M.; Tam, K.H.; Lau, K.M. A novel BLU-free full-color LED projector using LED on silicon micro-displays. IEEE Photonics Technol. Lett. 2013, 25, 2267–2270. [Google Scholar] [CrossRef]
- Chong, W.C.; Wong, K.M.; Liu, Z.J.; Lau, K.M. 60.4: A Novel Full-Color 3LED Projection System using R-G-B Light Emitting Diodes on Silicon (LEDoS) micro-displays. SID Symp. Dig. Techn. Pap. 2013, 44, 838–841. [Google Scholar] [CrossRef]
- Zhang, L.; Ou, F.; Chong, W.C.; Chen, Y.; Li, Q. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—A mass manufacturable approach for active matrix micro-LED micro-displays. J. Soc. Inf. Disp. 2018, 26, 137–145. [Google Scholar] [CrossRef]
- Santos, J.M.; Jones, B.E.; Schlosser, P.J.; Watson, S.; Herrnsdorf, J.; Guilhabert, B.; McKendry, J.J.; De Jesus, J.; Garcia, T.A.; Tamargo, M.C. Hybrid GaN LED with capillary-bonded II–VI MQW color-converting membrane for visible light communications. Semicond. Sci. Technol. 2015, 30, 035012. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.H.; Jang, Y.J.; Kim, J.-Y.; Han, M.; Kang, M.; Yang, K.; Ryou, J.-H.; Kwon, M.-K. High-Performance Color-Converted Full-Color micro-LED Arrays. Appl. Sci. 2020, 10, 2112. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Xu, M.; Wang, H. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes. Opto-Electron. Rev. 2016, 24, 1–9. [Google Scholar] [CrossRef]
- Park, S.-H.; Chuang, S.-L. Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects. J. Appl. Phys. 2000, 87, 353–364. [Google Scholar] [CrossRef]
- Masui, H.; Sonoda, J.; Pfaff, N.; Koslow, I.; Nakamura, S.; DenBaars, S.P. Quantum-confined Stark effect on photoluminescence and electroluminescence characteristics of InGaN-based light-emitting diodes. J. Phys. D Appl. Phys. 2008, 41, 165105. [Google Scholar] [CrossRef]
- Kioupakis, E.; Yan, Q.; Van de Walle, C.G. Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. Appl. Phys. Lett. 2012, 101, 231107. [Google Scholar] [CrossRef] [Green Version]
- David, A.; Grundmann, M.J.; Kaeding, J.F.; Gardner, N.F.; Mihopoulos, T.G.; Krames, M.R. Carrier distribution in (0001) In Ga N/ Ga N multiple quantum well light-emitting diodes. Appl. Phys. Lett. 2008, 92, 053502. [Google Scholar] [CrossRef]
- Rozhansky, I.; Zakheim, D. Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping. Phys. Status Solidi 2007, 204, 227–230. [Google Scholar] [CrossRef]
- Hwang, D.; Mughal, A.; Pynn, C.D.; Nakamura, S.; DenBaars, S.P. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Appl. Phys. Express 2017, 10, 032101. [Google Scholar] [CrossRef]
- Lymperakis, L.; Schulz, T.; Freysoldt, C.; Anikeeva, M.; Chen, Z.; Zheng, X.; Shen, B.; Chèze, C.; Siekacz, M.; Wang, X. Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells. Phys. Rev. Mater. 2018, 2, 011601. [Google Scholar] [CrossRef]
- Even, A. In incorporation Improvement in InGaN Based Active Region usIng InGaN Pseudo Substrate for Monolithic White LED Application. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2018. [Google Scholar]
- Kim, M.-H.; Schubert, M.F.; Dai, Q.; Kim, J.K.; Schubert, E.F.; Piprek, J.; Park, Y. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 2007, 91, 183507. [Google Scholar] [CrossRef] [Green Version]
- Even, A.; Laval, G.; Ledoux, O.; Ferret, P.; Sotta, D.; Guiot, E.; Levy, F.; Robin, I.; Dussaigne, A. Enhanced In incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate. Appl. Phys. Lett. 2017, 110, 262103. [Google Scholar] [CrossRef]
- Dussaigne, A.; Barbier, F.; Samuel, B.; Even, A.; Templier, R.; Lévy, F.; Ledoux, O.; Rozhavskaia, M.; Sotta, D. Strongly reduced V pit density on InGaNOS substrate by using InGaN/GaN superlattice. J. Cryst. Growth 2020, 533, 125481. [Google Scholar] [CrossRef]
- Damilano, B.; Demolon, P.; Brault, J.; Huault, T.; Natali, F.; Massies, J. Blue-green and white color tuning of monolithic light emitting diodes. J. Appl. Phys. 2010, 108, 073115. [Google Scholar] [CrossRef]
- Damilano, B.; Dussaigne, A.; Brault, J.; Huault, T.; Natali, F.; Demolon, P.; De Mierry, P.; Chenot, S.; Massies, J. Monolithic white light emitting diodes using a (Ga, In) N/GaN multiple quantum well light converter. Appl. Phys. Lett. 2008, 93, 101117. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, Z.; McKendry, J.J.; Watson, S.; Cogman, A.; Xie, E.; Tian, P.; Gu, E.; Chen, Z.; Zhang, G. CMOS-controlled color-tunable smart display. IEEE Photonics J. 2012, 4, 1639–1646. [Google Scholar] [CrossRef] [Green Version]
- El-Ghoroury, H.S.; Yeh, M.; Chen, J.; Li, X.; Chuang, C.-L. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers. AIP Adv. 2016, 6, 075316. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Ra, Y.-H.; Wu, Y.; Zhao, S.; Nguyen, H.P.; Shih, I.; Mi, Z. Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire. In Proceedings Volume 9748, Gallium Nitride Materials and Devices XI; International Society for Optics and Photonics: San Francisco, CA, USA, 2016; p. 97481S. [Google Scholar]
- Wang, R.; Nguyen, H.P.; Connie, A.T.; Lee, J.; Shih, I.; Mi, Z. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt. Express 2014, 22, A1768–A1775. [Google Scholar] [CrossRef]
- Kishino, K.; Sakakibara, N.; Narita, K.; Oto, T. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Appl. Phys. Express 2019, 13, 014003. [Google Scholar] [CrossRef]
- Bui, H.Q.T.; Velpula, R.T.; Jain, B.; Aref, O.H.; Nguyen, H.-D.; Lenka, T.R.; Nguyen, H.P.T. Full-color InGaN/AlGaN nanowire micro light-emitting diodes grown by molecular beam epitaxy: A promising candidate for next generation micro displays. Micromachines 2019, 10, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-M.; Cho, Y.-H.; Lee, H.; Kim, S.I.; Ryu, S.R.; Kim, D.Y.; Kang, T.W.; Chung, K.S. High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 2004, 4, 1059–1062. [Google Scholar] [CrossRef]
- Qian, F.; Li, Y.; Gradecak, S.; Wang, D.; Barrelet, C.J.; Lieber, C.M. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 2004, 4, 1975–1979. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Li, F.; Fatehi, A.; Mi, Z. Molecular beam epitaxial growth and characterization of non-tapered InN nanowires on Si (111). Nanotechnology 2009, 20, 345203. [Google Scholar] [CrossRef]
- Mulyo, A.L.; Konno, Y.; Nilsen, J.S.; van Helvoort, A.T.; Fimland, B.-O.; Weman, H.; Kishino, K. Growth study of self-assembled GaN nanocolumns on silica glass by plasma assisted molecular beam epitaxy. J. Cryst. Growth 2017, 480, 67–73. [Google Scholar] [CrossRef]
- Hong, Y.J.; Lee, C.H.; Yoon, A.; Kim, M.; Seong, H.K.; Chung, H.J.; Sone, C.; Park, Y.J.; Yi, G.C. Visible-color-tunable light-emitting diodes. Adv. Mater. 2011, 23, 3284–3288. [Google Scholar] [CrossRef]
- Nguyen, H.P.T.; Cui, K.; Zhang, S.; Fathololoumi, S.; Mi, Z. Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon. Nanotechnology 2011, 22, 445202. [Google Scholar] [CrossRef]
- Bui, H.Q.T.; Velpula, R.T.; Jain, B.; Nguyen, H.P.T. Full-Color microLEDs for Display Technologies. In CLEO: Applications and Technology; Optical Society of America: Washington, DC, USA, 2020; p. ATh3I-4. [Google Scholar]
- Liu, X.; Wu, Y.; Malhotra, Y.; Sun, Y.; Ra, Y.H.; Wang, R.; Stevenson, M.; Coe-Sullivan, S.; Mi, Z. Submicron full-color LED pixels for microdisplays and micro-LED main displays. J. Soc. Inf. Disp. 2020, 28, 410–417. [Google Scholar] [CrossRef]
- Ra, Y.H.; Wang, R.; Woo, S.Y.; Djavid, M.; Mi, Z. Full-color single nanowire pixels for projection displays. Nano Lett. 2016, 7, 4608–4615. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Shen, C.-C.; Wu, T.; Liao, Z.-Y.; Chen, L.-F.; Zhou, J.-R.; Lee, C.-F.; Lin, C.-H.; Lin, C.-C.; Sher, C.-W. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res. 2019, 7, 416–422. [Google Scholar] [CrossRef]
- Wang, S.-W.; Hong, K.-B.; Tsai, Y.-L.; Teng, C.-H.; Tzou, A.-J.; Chu, Y.-C.; Lee, P.-T.; Ku, P.-C.; Lin, C.-C.; Kuo, H.-C. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Sci. Rep. 2017, 7, 42962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masui, H.; Nakamura, S.; DenBaars, S.P.; Mishra, U.K. Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges. IEEE Trans. Electron Devices 2009, 57, 88–100. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, G.; Zhang, J.; Poplawsky, J.D.; Dierolf, V.; Tansu, N. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 2011, 19, A991–A1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usman, M.; Anwar, A.-R.; Munsif, M.; Han, D.-P.; Saba, K. Amelioration of internal quantum efficiency of green GaN-based light-emitting diodes by employing variable active region. Phys. E Low-Dimens. Syst. Nanostructures 2020, 117, 113826. [Google Scholar] [CrossRef]
- Usman, M.; Munsif, M.; Anwar, A.-R.; Jamal, H.; Malik, S.; Islam, N.U. Quantum efficiency enhancement by employing specially designed AlGaN electron blocking layer. Superlattices Microstruct. 2020, 139, 106417. [Google Scholar] [CrossRef]
Display Technology | LCD | OLED | Micro-LED |
---|---|---|---|
Luminous mode | Backlight module | Self-luminous | Self-luminous |
Luminous efficiency | Low | Medium | High |
Brightness (cd/sqm) | 3000 | 1000 | 10,000 |
Contrast | 5000:1 | 10,000:1 | 1,000,000:1 |
Life (hours) | 60 K | 20–30 K | 80–100 K |
Color rendering | 75% NTSC | 124% NTSC | 140% NTSC |
Response time | Millisecond level | Microsecond level | Nanosecond level |
Energy consumption | High | About 60–85% of LCD | About 30–40% of LCD |
Pixels per inch (PPI) | 800 | 500 | >2000 |
Mass Transfer Method | Transfer Performance | Advantage | Disadvantage |
---|---|---|---|
Elastomer stamp | Transfer yield in 99.99% | Softness and stickiness of elastomer stamp ensure that it can transfer the microstructures in an economical and efficient way. | Poor repeatability. |
Laser-induced transfer | ≤500 million units/hour | High resolution and impurities will not be introduced on the substrate surface. | The transfer stability is affected by the laser source. |
FSA transfer | Transfer yield in 65% | Easy to operate, small parasitic effects and low cost. | Low transfer efficiency and accuracy. |
Electrostatic transfer | ~1 million/hour | Flexible and good repeatability. | Electrostatic phenomena can damage microdevices; small transfer area. |
R2R (R2P) | Transfer yield in ~99.9% | Low cost, high throughput and high efficiency. | It can damage larger microdevices. |
Preparation Process | Solid State Reaction | Sol gel/ Pechini | Co-Precipitation | Hydrothermal | Combustion | Spray Pyrolysis |
---|---|---|---|---|---|---|
size | >5 μm | 10 nm–2 μm | 10 nm–1 μm | 10 nm–1 μm | 500 nm–2 μm | 100 nm–2 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Ma, J.; Su, P.; Zhang, L.; Xia, B. Full-Color Realization of Micro-LED Displays. Nanomaterials 2020, 10, 2482. https://doi.org/10.3390/nano10122482
Wu Y, Ma J, Su P, Zhang L, Xia B. Full-Color Realization of Micro-LED Displays. Nanomaterials. 2020; 10(12):2482. https://doi.org/10.3390/nano10122482
Chicago/Turabian StyleWu, Yifan, Jianshe Ma, Ping Su, Lijun Zhang, and Bizhong Xia. 2020. "Full-Color Realization of Micro-LED Displays" Nanomaterials 10, no. 12: 2482. https://doi.org/10.3390/nano10122482
APA StyleWu, Y., Ma, J., Su, P., Zhang, L., & Xia, B. (2020). Full-Color Realization of Micro-LED Displays. Nanomaterials, 10(12), 2482. https://doi.org/10.3390/nano10122482