Chitosan-Stabilized Noble Metal Nanoparticles: Study of their Shape Evolution and Post-Functionalization Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Chitosan-Stabilized Nanostructures
3.2. Characterization of PCDA-Coated Nanostructures
- the nanocages of the HCS@NSs sample seem to represent an ideal substrate for the optimum packing of PCDA monomers and their subsequent photopolymerization in the “pure” blue form, suitable for sensing purposes. No significant changes are found in the behavior of the aged nanocages studied in this work with respect to that of the freshly-synthetized ones previously published [21], to indicate that the surface properties of these nanostructures are not altered by aging;
- the nanoplatelets of the aged σCS@NSs sample are found to be platforms much less effective for the chemisorption of PCDA, most probably owing to their flat morphology. By taking into account the well-known selectivity of surfactants for different crystallographic planes of gold nanocrystals in the self-assembly process, it is possible that poor alignment of the carboxylic-endowed diacetylene occurred on the exposed facets of the nanoplatelets, which in turn hampered the polymer photogeneration. Nevertheless, the nanoplatelets turned out to be very performing SERS enhancers in virtue of their well-defined anisotropic shape.
- anchoring and polymerization of PCDA on freshly-synthesized σCS@NSs preserved the morphology of the nanostructures in water, most likely because the formation of a cross-linked structure in the coating shell hindered the shape transition of the metal cores to platelike geometries.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sajanlal, P.R.; Sreeprasad, T.S.; Samal, A.K.; Pradeep, T. Anisotropic nanomaterials: Structure, growth, assembly, and functions. Nano Rev. 2011, 2, 5883–5964. [Google Scholar] [CrossRef] [PubMed]
- Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.J.; Gole, A.M.; Stone, J.W.; Sisco, P.N.; Alkilany, A.M.; Goldsmith, E.C.; Baxter, S.C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem. Res. 2008, 41, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Banholzer, M.J.; Millstone, J.E.; Qin, L.; Mirkin, C.A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Ray, P.C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev. 2010, 110, 5332–5365. [Google Scholar] [CrossRef] [Green Version]
- Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J.J.; Langer, J.; Liz-Marzán, L.M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in Surface-Enhanced Raman Scattering. ACS Nano 2014, 8, 5833–5842. [Google Scholar] [CrossRef]
- Murphy, C.J.; Jana, N.R. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv. Mater. 2002, 14, 80–82. [Google Scholar] [CrossRef]
- Szustakiewicz, P.; Gonzáles-Rubio, G.; Scarabelli, L.; Lewandowsli, W. Robust synthesis of gold nanotriangles and their self-assembly into vertical arrays. ChemistryOpen 2019, 8, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Seed-mediated growth approach for shape controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389–1393. [Google Scholar] [CrossRef]
- Scarabelli, L.; Sánchez-Iglesias, A.; Pérez-Juste, J.; Liz-Márzan, L.M. A “Tips and Tricks” practical guide to the synthesis of gold nanorods. J. Phys. Chem. Lett. 2015, 6, 4270–4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, F.; Nehl, C.L.; Hafner, J.H.; Nordlander, P. Plasmon Resonances of a Gold Nanostar. Nano Lett. 2007, 7, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dong, S.; Wang, E. High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir 2005, 21, 4710–4712. [Google Scholar] [CrossRef] [PubMed]
- Jana, N.R. Gram-Scale Synthesis of Soluble, Near-Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles. Small 2005, 1, 875–882. [Google Scholar] [CrossRef]
- Alloisio, M.; Martinez-Espinoza, M.I.; Dellepiane, G.; Maccagno, M.; Thea, S.; Ottonelli, M. Synthesis of fluorescent, triangular gold nanoplates through surface capping by a cationic diacetylene. Mater. Chem. Phys. 2019. under review. [Google Scholar] [CrossRef]
- Alexandridis, P.; Tsianou, M. Block copolymer-directed metal nanoparticle morphogenesis and organization. Eur. Polym. J. 2011, 47, 569–583. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Mayers, B.T.; Xia, Y. Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors. Nano Lett. 2002, 2, 481–485. [Google Scholar] [CrossRef]
- Au, L.; Chen, Y.; Zhou, F.; Camargo, P.H.C.; Lim, B.; Li, Z.-Y.; Ginger, D.G.; Xia, Y. Synthesis and optical properties of cubic gold nanoframes. Nano Res. 2008, 1, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Wiley, B.J.; Chen, J.; Li, Z.-Y.; Yin, Y.; Xia, Y. Corrosion based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew. Chem. Int. Ed. 2005, 44, 7913–7917. [Google Scholar] [CrossRef]
- Kim, D.; Park, J.; An, K.; Yang, N.-K.; Park, J.-G.; Hyeon, T. Synthesis of hollow iron nanoframes. J. Am. Chem. Soc. 2007, 129, 5812–5813. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y. Multiple-walled nanotubes made of metals. Adv. Mater. 2004, 16, 264–268. [Google Scholar] [CrossRef]
- Demartini, A.; Alloisio, M.; Cuniberti, C.; Dellepiane, G.; Jadhav, S.A.; Thea, S.; Giorgetti, E.; Gellini, C.; Muniz-Miranda, M. Polydiacetylene-Functionalized Noble Metal Nanocages. J. Phys. Chem. C 2009, 113, 19475–19481. [Google Scholar] [CrossRef]
- Shukula, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Majeti, N.V.; Ravi, K. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar]
- Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical Application of Chitosan and Its derivative Nanoparticles. Polymers 2018, 10, 462. [Google Scholar] [CrossRef] [Green Version]
- Top Emerging Bio-based Products, Their Properties and Industrial Applications. Available online: https://www.ecologic.eu/15776 (accessed on 25 October 2019).
- Alloisio, M.; Zappia, S.; Demartini, A.; Petrillo, G.; Ottonelli, M.; Thea, S.; Dellepiane, G.; Muniz-Miranda, M. Enhanced and reproducible photogeneration of blue poly(pentacosadiacetylene) chemisorbed onto silver nanoparticles: An optimized synthetic protocol. Mater. Chem. Phys. 2014, 147, 293–303. [Google Scholar] [CrossRef]
- Alloisio, M.; Zappia, S.; Demartini, A.; Ottonelli, M.; Dellepiane, G.; Thea, S.; Zoppi, A.; Giorgetti, E.; Muniz-Miranda, M. Novel Polydiacetylene-Functionalized Nanostructuresfor Sensing Applications. e-J. Surf. Sci. Nanotechnol. 2012, 10, 549–552. [Google Scholar] [CrossRef] [Green Version]
- Alloisio, M.; Zappia, S.; Demartini, A.; Martinez-Espinoza, M.I.; Ottonelli, M.; Dellepiane, G.; Thea, S.; Cavalleri, O.; Rolandi, R. Silver-polydiacetylene core–shell nanohybrids: From nano to mesoscale architectures. Nano-Struct. Nano-Objects 2015, 4, 15–22. [Google Scholar] [CrossRef]
- Demartini, A. Preparazione e Caratterizzazione di Biomateriali per Applicazioni in Campo Biomedicale. Ph.D. Thesis, Chemical Sciences, 17th Cycle, University of Genoa, Genoa, Italy, 2005. [Google Scholar]
- Drezner, Z.; Turel, O. Normalizing variables with too-frequent values using a Kolmogorov–Smirnov test: A practical approach. Comput. Ind. Eng. 2011, 61, 1240–1244. [Google Scholar] [CrossRef]
- Pham-Gia, T.; Hung, T.L. The mean and median absolute deviations. Math. Comput. Model. 2001, 34, 921–936. [Google Scholar] [CrossRef]
- Castellano, M.; Alloisio, M.; Darawish, R.; Dodero, A.; Vicini, S. Electrospun composite mats of alginate with embedded silver nanoparticles. J. Therm. Anal. Calorim. 2019, 137, 767–778. [Google Scholar] [CrossRef]
- Martinez-Espinoza, M.I.; Maccagno, M.; Thea, S.; Alloisio, M. Self-assembly and photopolymerization of a novel quaternary-ammonium functionalized diacetylene on noble metal nanoparticles: A comparative study. Appl. Surf. Sci. 2018, 427, 724–732. [Google Scholar] [CrossRef]
- Millstone, J.E.; Park, S.; Shuford, K.L.; Qin, L.; Schatz, G.C.; Mirkin, C.A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 2005, 127, 5312–5313. [Google Scholar] [CrossRef] [PubMed]
- Nyström, B.; Kjøniksen, A.L.; Iversen, C. Characterization of association phenomena in aqueous systems of chitosan of different hydrophobicity. Adv. Coll. Interface Sci. 1999, 79, 81–103. [Google Scholar] [CrossRef]
- Abedini, A.; Bakar, A.A.A.; Larki, F.; Menon, P.S.; Islam, M.S.; Shaari, S. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route. Nanoscale Res. Lett. 2016, 11, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Raimondo, C.; Allosio, M.; Demartini, A.; Cuniberti, C.; Dellepiane, G.; Jadhav, S.A.; Petrillo, G.; Giorgetti, E.; Gellini, C.; Muniz-Miranda, M. Photopolymerization in water of diacetylenes chemisorbed onto noble metal nanoparticles: A spectroscopic study. J. Raman Spectrosc. 2009, 40, 1831–1837. [Google Scholar] [CrossRef]
Sample | Size (nm) | Thickness (nm) | Aspect Ratio |
---|---|---|---|
σCS@NSs | 23 ± 8 | 7 ± 2 | 3.3 |
HCS@NSs | 55 ± 10 | - | 1.2 |
Sample | Aging (Year) | PB (%) | PD 105 (L/mol) |
---|---|---|---|
σ-pPCDA@NSs | 0 | 66 | 5.0 |
σ-pPCDA@NSs | 1 | 61 | 0.4 |
H-pPCDA@NSs | 1 | 73 | 8.4 |
pPCDA | 0 | 47 | 0.8 |
pPCDA@AgNPs 1 | 0 | 74 | 7.8 |
Sample | ν (C = C) (cm−1) | ν (C ≡ C) (cm−1) | p(PCDA) Form |
---|---|---|---|
σ-pPCDA@NSs (purple line) | 1452 | 2082 2145 | blue red |
σ-pPCDA@NS (black line) | 1449 | 2083 2148 | blue red |
H-pPCDA@NSs (brown line) | 1499 | 2079 2144 | blue red |
pPCDA (black line)- | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ottonelli, M.; Zappia, S.; Demartini, A.; Alloisio, M. Chitosan-Stabilized Noble Metal Nanoparticles: Study of their Shape Evolution and Post-Functionalization Properties. Nanomaterials 2020, 10, 224. https://doi.org/10.3390/nano10020224
Ottonelli M, Zappia S, Demartini A, Alloisio M. Chitosan-Stabilized Noble Metal Nanoparticles: Study of their Shape Evolution and Post-Functionalization Properties. Nanomaterials. 2020; 10(2):224. https://doi.org/10.3390/nano10020224
Chicago/Turabian StyleOttonelli, Massimo, Stefania Zappia, Anna Demartini, and Marina Alloisio. 2020. "Chitosan-Stabilized Noble Metal Nanoparticles: Study of their Shape Evolution and Post-Functionalization Properties" Nanomaterials 10, no. 2: 224. https://doi.org/10.3390/nano10020224
APA StyleOttonelli, M., Zappia, S., Demartini, A., & Alloisio, M. (2020). Chitosan-Stabilized Noble Metal Nanoparticles: Study of their Shape Evolution and Post-Functionalization Properties. Nanomaterials, 10(2), 224. https://doi.org/10.3390/nano10020224