Performance of a Low Energy Ion Source with Carbon Nanotube Electron Emitters under the Influence of Various Operating Gases
Abstract
:1. Introduction
2. Layout of CNT-LEIS
3. Properties of Electron Emitters in CNT-LEIS
3.1. Emission Properties of CNTs in Base Pressure
3.2. Gas Adsorbates Influenced Field Emission
3.3. Reversibility of CNT Emissions in Different Gases
4. Intensity and Sensitivity of CNT-LEIS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gringauz, K.I.; Gombosi, T.I.; Remizov, A.P.; Apathy, I.; Szemerey, I.; Verigin, M.I.; Denchikova, L.I.; Dyachkov, A.V.; Keppler, E.; Klimenko, I.N.; et al. First In-Situ Plasma and Neutral Gas Measurements at Comet Halley. Nature 1986, 321, 282. [Google Scholar] [CrossRef]
- Balsiger, H.; Altwegg, K.; Buhler, F.; Geiss, J.; Ghielmetti, A.G.; Goldstein, B.E.; Goldstein, R.; Huntress, W.T.; Ip, W.H.; Lazarus, A.J.; et al. Ion composition and dynamics at comet Halley. Nature 1986, 321, 330. [Google Scholar] [CrossRef]
- Balsiger Hans Altwegg, K.; Bochsler, P.; Eberhardt, P.; Fischer, J.; Graf, S.; Jäckel, A.; Kopp, E.; Langer, U.; Mildner, M.; Müller, J.; et al. ROSINA—Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Sci. Rev. 2007, 128, 745. [Google Scholar] [CrossRef]
- Marti, A.; Schletti, R.; Wurz, P.; Bochsler, P. Calibration facility for solar wind plasma instrumentation. Rev. Sci. Instrum. 2001, 72, 1354. [Google Scholar] [CrossRef]
- Wurz, P.; Vorburger, A.; Galli, A.; Tulej, M.; Thomas, N.; Alibert, Y.; Barabash, S.; Wieser, M.; Lammer, H. Measurement of the Atmospheres of Europa, Ganymede, and Callisto. Eur. Planet. Sci. Congr. 2014, 9, 2014. [Google Scholar]
- Vorburger, A.; Wurz, P.; Lammer, H.; Barabash, S.; Mousis, O. Monte-Carlo simulation of Callisto’s exosphere. Icarus 2015, 262, 14–29. [Google Scholar] [CrossRef]
- Meyer, S.; Tulej, M.; Wurz, P. A low energy ion beam facility for mass spectrometer calibration: First results. Rev. Sci. Instrum. 2018, 89, 013305. [Google Scholar] [CrossRef] [Green Version]
- Rubin, M. Development of a Low Energy Ion Source for ROSINA Ion Mode Calibration; University of Bern: Bern, Switzerland, 2006. [Google Scholar]
- Bagdonat, T.; Motschmann, U.; Glassmeier, K.-H.; Kührt, E. The New Rosetta Targets; Kluwer: Dordrecht, The Netherlands, 2004; pp. 153–166. [Google Scholar]
- Wilson, R.G.; Brewer, G.R. Ion Beams, 1st ed.; John Wiley & Sons, Inc.: New York, NY, USA, January 1973. [Google Scholar]
- Dong, C.; Luo, H.; Cai, J.; Wang, F.; Zhao, Y.; Li, D. Hydrogen sensing characteristics from carbon nanotube field emissions. Nanoscale 2016, 8, 5599. [Google Scholar] [CrossRef]
- Kawano, T.; Chiamori, H.C.; Suter, M.; Zhou, Q.; Sosnowchik, B.D.; Lin, L. An Electrothermal Carbon Nanotube Gas Sensor. Nano Lett. 2007, 7, 3686. [Google Scholar] [CrossRef] [Green Version]
- Firouzi, A.; Sobri, S.; Yasin, F.M.; Ahmadun, F.r.b. The effect of CH4 and CO2 exposure on carbon nanotubes electrical resistance etc. Adv. Mater. Res. 2011, 214, 655. [Google Scholar] [CrossRef]
- Urita, K.; Seki, S.; Utsumi, S.; Noguchi, D.; Kanoh, H.; Tanaka, H.; Hattori, Y.; Ochiai, Y.; Aoki, N.; Yudasaka, M.; et al. Effects of Gas Adsorption on the Electrical Conductivity of Single-Wall Carbon Nanohorns. Nano Lett. 2006, 6, 1325. [Google Scholar] [CrossRef] [PubMed]
- Rubin, M.; Altwegg, K.; Jäckel, A.; Balsiger, H. Development of a low energy ion source for ROSINA ion mode calibration. Rev. Sci. Instrum. 2006, 77, 103302. [Google Scholar] [CrossRef]
- Lotz, W. Electron-Impact Ionization Cross-Sections and Ionization Rate Coefficients for Atoms and Ions. Astrophys. J. Suppl. 1967, 14, 207. [Google Scholar] [CrossRef] [Green Version]
- Märk, T.D.; Dunn, G.H. Electron Impact Ionisation; Springer: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Fujii, S.; Honda, S.; Machida, H.; Kawai, H.; Ishida, K.; Katayama, M. Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect. Appl. Phys. Lett. 2007, 90, 153108. [Google Scholar] [CrossRef]
- Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A 1928, 119, 173. [Google Scholar]
- Dean, K.A.; Chalamala, B.R. The environmental stability of field emission from single-walled carbon nanotubes. Appl. Phys. Lett. 1999, 75, 3017. [Google Scholar] [CrossRef]
- Dong, C.; Gupta, M.C. Influences of the surface reactions on the field emission from multiwall carbon nanotubes. Appl. Phys. Lett. 2003, 83, 159. [Google Scholar] [CrossRef]
- Dean, K.A.; Chalamala, B.R. Current saturation mechanisms in carbon nanotube field emitters. Appl. Phys. Lett. 2000, 76, 375. [Google Scholar] [CrossRef]
- Zhi, C.Y.; Bai, X.D.; Wang, E.G. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl. Phys. Lett. 2002, 81, 1690–1692. [Google Scholar] [CrossRef]
- Yaghoobi, P.; Alam, M.K.; Walus, K.; Nojeh, A. High subthreshold field-emission current due to Hydrogen adsorption in single-walled Carbon nanotubes: A first-principles study. Appl. Phys. Lett. 2009, 95, 262102–262104. [Google Scholar] [CrossRef]
- Gomer, R. American Vacuum Society Classics; AIP Press: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Lithoxoos, G.P.; Labropoulos, A.; Peristeras, L.D.; Kanellopoulos, N.; Samios, J.; Economou, I.G. Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study. J. Supercrit. Fluids 2010, 55, 510–523. [Google Scholar] [CrossRef]
- Henwood, D.; Carey, J.D. Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Phys. Rev. B 2007, 75, 245413–245422. [Google Scholar] [CrossRef] [Green Version]
- Sheng, L.M.; Liu, P.; Liu, Y.M.; Qian, L.; Huang, Y.S.; Liu, L.; Fan, S.S. Effects of carbon-containing gases on the field-emission current of multiwalled carbon-nanotube arrays. J. Vac. Sci. Technol. A 2003, 21, 1202–1204. [Google Scholar] [CrossRef]
- Lehtinen, O.; Nikitin, T.; Krasheninnikov, A.V.; Sun, L.; Banhart, F.; Khriachtchev, L.; Keinonen, J. Characterization of ion-irradiation-induced defects in multi-walled carbon nanotubes. New J. Phys. 2011, 13, 073004. [Google Scholar] [CrossRef] [Green Version]
- Agusta, M.K.; Prasetiyo, I.; Saputro, A.G.; Maezono, R.; Dipojono, H.K. First-Principles Molecular Dynamics Study on Helium- filled Carbon Nanotube. J. Phys. Conf. Ser. 2016, 739, 012081. [Google Scholar] [CrossRef]
- Lim, S.C.; Jeong, H.J.; Park, Y.S.; Bae, D.S.; Choi, Y.C.; Shin, Y.M.; Kim, W.S.; An, K.H.; Lee, Y.H. Field-emission properties of vertically aligned carbon-nanotube array dependent on gas exposures and growth conditions. J. Vac. Sci. Technol. A 2001, 19, 1786. [Google Scholar] [CrossRef]
- Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W.R.; Shaffer, M.S.P.; Windle, A.H.; Friend, R.H. Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes. J. Phys. Chem. B 1999, 103, 8116–8121. [Google Scholar] [CrossRef]
- Jousten, K. Handbook of Vacuum Technology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Kim, D.-H.; Jang, H.-S.; Kim, C.-D.; Cho, D.-S.; Kang, H.-D.; Lee, H.-R. Enhancement of the field emission of carbon nanotubes straightened by application of argon ion irradiation Chem. Phys. Lett. 2003, 378, 232–237. [Google Scholar]
- Maity, S.; Das, N.S.; Chattopadhyay, K.K. Controlled surface damage of amorphous and crystalline carbon nanotubes for enhanced field emission. Phys. Status Solidi B 2013, 250, 1919–1925. [Google Scholar] [CrossRef]
- Wadhawan, A.; Stallcup, R.E.; Stephens, K.F.; Perez, J.M.; Akwani, I.A. Effects of O2, Ar, and H2 gases on the fieldemission properties of single-walled and multiwalled carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1867. [Google Scholar] [CrossRef] [Green Version]
- Instructure Manual of Granville-Phillips Seris 370 Stabil-Ion Vacuum Measurement Controller, Brooks Automation, Inc. Available online: http://tvc.unibe.ch/doc/370_Stabil-Ion.pdf (accessed on 1 November 2019).
Gas | Sensitivity (Pa−1) | Relative Standard Deviation (RSD) |
---|---|---|
H2 | 0.221 | 5.1% |
He | 0.088 | 6.8% |
CO2 | 2.30 | 6.5% |
Ar | 1.93 | 11.7% |
O2 | 1.19 | 8.1% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, D.; Wurz, P.; Etter, A.; Cheng, Y.; Dong, C.; Huang, W. Performance of a Low Energy Ion Source with Carbon Nanotube Electron Emitters under the Influence of Various Operating Gases. Nanomaterials 2020, 10, 354. https://doi.org/10.3390/nano10020354
Zhang H, Li D, Wurz P, Etter A, Cheng Y, Dong C, Huang W. Performance of a Low Energy Ion Source with Carbon Nanotube Electron Emitters under the Influence of Various Operating Gases. Nanomaterials. 2020; 10(2):354. https://doi.org/10.3390/nano10020354
Chicago/Turabian StyleZhang, Huzhong, Detian Li, Peter Wurz, Adrian Etter, Yongjun Cheng, Changkun Dong, and Weijun Huang. 2020. "Performance of a Low Energy Ion Source with Carbon Nanotube Electron Emitters under the Influence of Various Operating Gases" Nanomaterials 10, no. 2: 354. https://doi.org/10.3390/nano10020354
APA StyleZhang, H., Li, D., Wurz, P., Etter, A., Cheng, Y., Dong, C., & Huang, W. (2020). Performance of a Low Energy Ion Source with Carbon Nanotube Electron Emitters under the Influence of Various Operating Gases. Nanomaterials, 10(2), 354. https://doi.org/10.3390/nano10020354