Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,244)

Search Parameters:
Keywords = ion source

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1106 KB  
Article
Simulated Photoabsorption Spectra for Singly and Multiply Charged Ions
by Stephan Fritzsche, Aloka Kumar Sahoo, Lalita Sharma and Stefan Schippers
Atoms 2025, 13(9), 77; https://doi.org/10.3390/atoms13090077 - 3 Sep 2025
Abstract
Simulated (or measured) photoabsorption spectra often provide the first indication of how matter interacts with light when irradiated by some radiation source. In addition to the direct, often slowly varying photoabsorption cross-section as a function of the incident photon frequency, such spectra typically [...] Read more.
Simulated (or measured) photoabsorption spectra often provide the first indication of how matter interacts with light when irradiated by some radiation source. In addition to the direct, often slowly varying photoabsorption cross-section as a function of the incident photon frequency, such spectra typically exhibit numerous resonances and edges arising from the interaction of the radiation field with the subvalence or even inner-shell electrons. Broadly speaking, these resonances reflect photoexcitation, with its subsequent fluorescence, or the autoionization of bound electrons. Here, a (relativistic) cascade model is developed for estimating the photoabsorption of (many) atoms and multiply charged ions with a complex shell structure across the periodic table. This model helps distinguish between level- and shell-resolved, as well as total photoabsorption, cross-sections, starting from admixtures of selected initial-level populations. Examples are shown for the photoabsorption of C+ ions near the 1s2p excitation threshold and for Xe2+ ions in the photon energy range from 10 to 200 eV. While the accuracy and resolution of the predicted photoabsortion spectra remain limited due to the additive treatment of resonances and because of missing electronic correlations in the representation of the levels involved, the present implementation is suitable for ions with quite different open-shell structures and may support smart surveys of resonances along different isoelectronic sequences. Full article
17 pages, 25721 KB  
Article
Seasonal Characteristics and Source Analysis of Water-Soluble Ions in PM2.5 in Urban and Suburban Areas of Chongqing
by Simei Tang, Jun Wang, Min Fu, Jiayan Yu, Wei Huang and Yu Zhou
Atmosphere 2025, 16(9), 1047; https://doi.org/10.3390/atmos16091047 - 3 Sep 2025
Abstract
This study systematically investigated water-soluble inorganic ions (WSIIs) and their sources in PM2.5 in mountainous urban areas of Chongqing City. PM2.5 monitoring was conducted throughout 2023, spanning one year. The two districts under discussion are the Liang Jiang New Area (LJ) and He [...] Read more.
This study systematically investigated water-soluble inorganic ions (WSIIs) and their sources in PM2.5 in mountainous urban areas of Chongqing City. PM2.5 monitoring was conducted throughout 2023, spanning one year. The two districts under discussion are the Liang Jiang New Area (LJ) and He Chuan District (HC). The ion chromatography (Dionex Integrion HPIC) method was utilized to quantify eight ions (Cl, SO42−, NO3, Na+, K+, Mg2+, Ca2+, NH4+). The results obtained were then analyzed in conjunction with the EPA PMF 5.0 source apportionment model. The following key findings are presented: the data demonstrate that there is significant seasonal fluctuation in PM2.5 concentrations. The mean winter concentration (64 ± 27 μg/m3) was found to be 3.25 times higher than the mean summer concentration (19.7 ± 2 μg/m3). These fluctuations were primarily influenced by basin topography and unfavorable meteorological conditions. The proportion of PM2.5 mass attributable to WSII ranges from 31 to 33 percent, with the majority of this mass being attributed to secondary inorganic aerosols (SNA: SO42−, NO3, NH4+; accounting for 47–85% WSII). The annual NO3/SO42− ratio (0.69–0.80, <1) indicates that fixed sources (coal/industry) dominate, but a winter ratio >1 suggests increased contributions from mobile sources under low-temperature conditions. The sulfur oxidation rate (SOR: 0.35–0.37) is significantly higher than the nitrogen oxidation rate (NOR: 0.08–0.13), reflecting the efficient conversion of SO2 through wet, low-temperature pathways. PMF identified six sources, with secondary formation (43.8–44.3%) being the primary contributor to the overall process. In urban LJ, transportation (26.1%) and industry (13.6%) have been found to contribute significantly, while in suburban HC, combustion (15.4%) and dust (8.8%) have been determined to have notable impacts. This study recommends the implementation of synergistic control of SNA precursors (SO2, NOx, NH3), the strengthening of transportation and industrial management in LJ, and the enhancement of biomass combustion and dust control in HC. Full article
(This article belongs to the Special Issue Air Pollution: Emission Characteristics and Formation Mechanisms)
Show Figures

Figure 1

15 pages, 6693 KB  
Article
Double-Network Hydrogels via Hybrid Strategies: Potential in Large-Scale Manufacturing for Colorimetric Indicator
by Ningli An, Jiwen Liu, Wentao Zhou, Qing He, Jianan Li and Yali Xiong
Gels 2025, 11(9), 697; https://doi.org/10.3390/gels11090697 - 2 Sep 2025
Viewed by 21
Abstract
Biological hydrogels are widely available in terms of raw material sources and can be processed and molded using relatively simple techniques. Hydrogels can offer abundant three-dimensional, water-containing channels that facilitate the reaction between gases and dye, making them the preferred choice for the [...] Read more.
Biological hydrogels are widely available in terms of raw material sources and can be processed and molded using relatively simple techniques. Hydrogels can offer abundant three-dimensional, water-containing channels that facilitate the reaction between gases and dye, making them the preferred choice for the solid support layer in colorimetric indicators. However, biomass hydrogels exhibit inferior mechanical properties, making them unsuitable for large-scale manufacturing processes. In this study, four dual-network composite hydrogels Agar/Gelatin, Sodium Alginate/Agar, Sodium Alginate/Poly (vinyl alcohol), Sodium Alginate/Gelatin (AG/Gel, SA/AG, SA/PVA and SA/Gel) prepared through hybrid strategies. Furthermore, the influence of the dual-network structure on the mechanical properties and ammonia response was systematically investigated, using microscopy and Fourier transform infrared spectroscopy (FTIR) characterization method. The experimental results demonstrate that the incorporation of SA into original hydrogel matrices can significantly enhance both the mechanical and ammonia response performance due to the secondary topological network structure. The interpenetrating double network structure was effectively regulated through the calcium ion cross-linking process. The color difference threshold of SA/PVA’s response to ammonia gas is 10, it holds promise for rapid detection applications. The SA/Gel composite hydrogel exhibits excellent mechanical robustness and toughness. The tensile strength of the SA/Gel sample is 11 times that of a single gel, and the toughness is 80 times greater, suggesting its suitability for large-scale manufacturing of colorimetric indicator. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

20 pages, 4626 KB  
Review
Biochar for Mitigating Nitrate Leaching in Agricultural Soils: Mechanisms, Challenges, and Future Directions
by Lan Luo, Jie Li, Zihan Xing, Tao Jing, Xinrui Wang and Guilong Zhang
Water 2025, 17(17), 2590; https://doi.org/10.3390/w17172590 - 1 Sep 2025
Viewed by 190
Abstract
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged [...] Read more.
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged as a promising amendment for nitrate mitigation. This review summarizes recent advances in understanding the roles of biochar in nitrate retention and transformation in soils, including both direct mechanisms—such as surface adsorption, ion exchange, and pore entrapment—and indirect mechanisms—such as enhanced microbial activity, soil structure improvement, and root system development. Field and laboratory evidence shows that biochar can reduce NO3-N leaching by 15–70%, depending on its properties, soil conditions, and application context. However, inconsistencies in performance due to differences in biochar types, soil conditions, and environmental factors remain a major barrier to widespread adoption. This review also suggests current knowledge gaps and research needs, including long-term field validation, biochar material optimization, and integration of biochar into precision nutrient management. Overall, biochar presents a multifunctional strategy for reducing nitrate leaching and promoting sustainable nitrogen management in agroecosystems. Full article
(This article belongs to the Special Issue Advanced Research in Non-Point Source Pollution of Watersheds)
Show Figures

Graphical abstract

17 pages, 5055 KB  
Article
Removal of Copper (II) from Aqueous Solutions Using Silica Xerogel as Sorbent: Adsorption Properties and Mechanism
by Ammaeva Shanaz, Isaev Abdulgalim, Schubert Richard, Pankov Ilya and Talanov Valery
Colloids Interfaces 2025, 9(5), 58; https://doi.org/10.3390/colloids9050058 - 1 Sep 2025
Viewed by 178
Abstract
The contamination of water resources with heavy metals creates problems for using it as a source of drinking water. Adsorption is one of the most promising methods for heavy metal ion removal from natural and wastewater. The process of removing copper (II) from [...] Read more.
The contamination of water resources with heavy metals creates problems for using it as a source of drinking water. Adsorption is one of the most promising methods for heavy metal ion removal from natural and wastewater. The process of removing copper (II) from aqueous solutions using SiO2 xerogel as an adsorbent has been studied. The xerogel was thoroughly characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and argon adsorption–desorption isotherms, revealing an amorphous structure with a high surface area (~347 m2/g) and uniform mesoporosity (2–14 nm pore size). The surface chemistry, dominated by silanol groups, was confirmed by XPS analysis. The adsorption process is influenced by electrostatic interactions between the positively charged Cu(II) ions and the negatively charged surface groups, with the optimal performance near neutral pH. Batch adsorption experiments demonstrated that the silica xerogel effectively removes Cu(II) ions from aqueous solutions, with removal efficiency exceeding 99% at pH values above 4.0. The maximum adsorption capacity of copper (II) ions on SiO2 xerogel is 67.5 mg/L. Full article
Show Figures

Graphical abstract

62 pages, 3631 KB  
Review
Tailoring Electrocatalytic Pathways: A Comparative Review of the Electrolyte’s Effects on Five Key Energy Conversion Reactions
by Goitom K. Gebremariam, Khalid Siraj and Igor A. Pašti
Catalysts 2025, 15(9), 835; https://doi.org/10.3390/catal15090835 - 1 Sep 2025
Viewed by 283
Abstract
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction [...] Read more.
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction (NRR). Beyond catalyst design, the electrolyte microenvironment significantly influences these reactions by modulating charge transfer, intermediate stabilization, and mass transport, making electrolyte engineering a powerful tool for enhancing performance. This review provides a comprehensive analysis of how fundamental electrolyte properties, including pH, ionic strength, ion identity, and solvent structure, affect the mechanisms and kinetics of these five reactions. We examine in detail how the electrolyte composition and individual ion contributions impact reaction pathways, catalytic activity, and product selectivity. For HER and OER, we discuss the interplay between acidic and alkaline environments, the effects of specific ions, interfacial electric fields, and catalyst stability. In ORR, we highlight pH-dependent activity, selectivity, and the roles of cations and anions in steering 2e versus 4e pathways. The CO2RR and NRR sections explore how the electrolyte composition, local pH, buffering capacity, and proton sources influence activity and the product distribution. We also address challenges in electrolyte optimization, such as managing competing reactions and maximizing Faradaic efficiency. By comparing the electrolyte’s effects across these reactions, this review identifies general trends and design guidelines for enhancing electrocatalytic performance and outlines key open questions and future research directions relevant to practical energy technologies. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Figure 1

24 pages, 9433 KB  
Article
Enrichment and Fractionation of Rare Earth Elements in High-Altitude Thick Weathered Crust Elution-Deposited Rare Earth Ore
by Zhenyue Zhang, Dan Li, Fei Long, Ruan Chi and Zhuo Chen
Minerals 2025, 15(9), 932; https://doi.org/10.3390/min15090932 - 1 Sep 2025
Viewed by 154
Abstract
Weathered crust elution-deposited rare earth ores (WCE-REOs) are the primary global source of medium and heavy rare earth elements (M/HREEs). The recent discovery of high-altitude (1500–2500 m) WCE-REOs in southern Yunnan Province, China, presents new opportunities for the development of M/HREE resources. This [...] Read more.
Weathered crust elution-deposited rare earth ores (WCE-REOs) are the primary global source of medium and heavy rare earth elements (M/HREEs). The recent discovery of high-altitude (1500–2500 m) WCE-REOs in southern Yunnan Province, China, presents new opportunities for the development of M/HREE resources. This study investigates the enrichment and fractionation mechanisms of rare earth elements (REEs) in these deposits through a systematic analysis of three representative weathering profiles associated with the Lincang granite batholith. The analytical results indicate that the profiles consist mainly of clay minerals (kaolinite, halloysite, illite, minor montmorillonite) and iron oxides, with high SiO2 (64.10–74.40 wt.%) and Al2O3 (15.50–20.20 wt.%) and low CaO/MgO—typical of weathered REE deposits. The total REE contents (238.12–1545.53 ppm) show distinct fractionation: LREE-enriched upper layers and HREE-enriched deeper zones. Sequential extraction revealed that the REEs in the Lincang granite weathering profiles predominantly occur in ion-exchangeable, residual, and iron-manganese oxide-bound states (>95% total REEs). Ion-exchangeable REEs showed depth-dependent enrichment (peaking at 819.96 ppm), while iron-manganese oxides exhibited a strong REE affinity (up to 47% total REEs), with amorphous phases that were preferentially enriched in Ce (partitioning >80%). Fissure systems exerted critical control over the redistribution of elements, particularly REEs. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

19 pages, 3882 KB  
Article
Olivine and Whole-Rock Geochemistry Constrain Petrogenesis and Geodynamics of Early Cretaceous Fangcheng Basalts, Eastern North China Craton
by Qiao-Chun Qin, Lu-Bing Hong, Yin-Hui Zhang, Hong-Xia Yu, Dan Wang, Le Zhang and Peng-Li He
Minerals 2025, 15(9), 928; https://doi.org/10.3390/min15090928 - 30 Aug 2025
Viewed by 125
Abstract
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through [...] Read more.
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through integrated geochemical analysis (major/trace elements, Sr-Nd-Pb isotopes, olivine chemistry) of Early Cretaceous (~125 Ma) Fangcheng basalts from Shandong. These basalts possess high MgO (8.14–11.31 wt%), Mg# (67.23–73.69), Ni (126–244 ppm), and Cr (342–526 ppm). Their trace elements show island arc basalt (IAB) affinities: enrichment in large-ion lithophile elements and depletion in high-field-strength elements, with negative Sr and Pb anomalies. Enriched Sr-Nd isotopic compositions [87Sr/86Sr(t) = 0.709426–0.709512; εNd(t) = −12.60 to −13.10], unradiogenic 206Pb/204Pb(t) and 208Pb/204Pb(t) ratios (17.55–17.62 and 37.77–37.83, respectively), and slightly radiogenic 207Pb/204Pb(t) ratios (15.55–15.57) reflect an upper continental crustal signature. Covariations of major elements, Cr, Ni, and trace element ratios (Sr/Nd, Sc/La) with MgO indicate dominant olivine + pyroxene fractionation. High Ce/Pb ratios and lack of correlation between Ce/Pb or εNd(t) and SiO2 preclude significant crustal contamination. The combined isotopic signature and IAB-like trace element patterns support a lithospheric mantle source that was metasomatized by upper crustal material. Olivine phenocrysts exhibit variable Ni (1564–4786 ppm), Mn (903–2406 ppm), Fe/Mn (56.63–85.49), 10,000 × Zn/Fe (9.55–19.55), and Mn/Zn (7.07–14.79), defining fields indicative of melts from both peridotite and pyroxenite sources. High-MgO samples (>10 wt%) in the Grossular/Pyrope/Diopside/Enstatite diagram show a clinopyroxene, garnet, and olivine residue. Reconstructed primary melts yield formation pressures of 3.5–3.9 GPa (110–130 km depth) and temperatures of 1474–1526 °C, corresponding to ~60 mW/m2 surface heat flow. This demonstrates retention of a ≥110–130 km thick lithosphere during peak destruction, arguing against delamination and supporting a thermo-mechanic erosion mechanism dominated by progressive convective thinning of the lithospheric base via asthenospheric flow. Our findings therefore provide crucial thermal and structural constraints essential for resolving the dynamics of cratonic lithosphere modification. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 1421 KB  
Article
Application of Electric Energy Storage Technologies for Small and Medium Prosumers in Smart Grids
by Rosa M. Rengel Gálvez, Julio J. Caparrós Mancera, Eduardo López González, Diego Tejada Guzmán and José M. Sancho Peñate
Processes 2025, 13(9), 2756; https://doi.org/10.3390/pr13092756 - 28 Aug 2025
Viewed by 264
Abstract
As the energy transition advances toward a low-carbon economy, small- and medium-sized consumers are increasingly becoming active prosumers, capable of generating, storing, and managing their own electricity. However, the intermittent nature of renewable sources poses significant challenges in matching generation with consumption, making [...] Read more.
As the energy transition advances toward a low-carbon economy, small- and medium-sized consumers are increasingly becoming active prosumers, capable of generating, storing, and managing their own electricity. However, the intermittent nature of renewable sources poses significant challenges in matching generation with consumption, making energy storage a key element for prosumer participation in smart grids. This work assesses the performance of various energy storage technologies suitable for prosumer applications, focusing on parameters such as efficiency, lifecycle behavior, and system integration. Lithium-ion batteries, supercapacitors, and hydrogen-based technologies were tested under real-world operating conditions within residential, commercial, and industrial scenarios. The results confirm that hybrid configurations deliver the most balanced performance, with supercapacitors improving short-term stability in commercial contexts and hydrogen storage enabling long-duration autonomy in industrial settings. In terms of battery state of charge, the experimental tests showed clear differences across prosumer types: in the residential case, it dropped to about 20–25% in the morning, but recovered to nearly full capacity by midday and stabilized at around 70–75% by the end of the day; in the commercial case, it fluctuated more widely, between roughly 18% and 100%, evidencing the highest stress on batteries; while in the industrial case, it reached 25–30% at peak demand, with hydrogen sustaining autonomy under extended load and ensuring greater long-term reliability. Overall, the findings reinforce the importance of tailored storage strategies to unlock the full potential of prosumers in smart grids. Full article
Show Figures

Figure 1

42 pages, 1483 KB  
Review
An Overview of Applications, Toxicology and Separation Methods of Lithium
by Ma. del Rosario Moreno-Virgen, Blanca Paloma Escalera-Velasco, Hilda Elizabeth Reynel-Ávila, Herson Antonio González-Ponce, Alvaro Rodrigo Videla-Leiva, Arturo Ignacio Morandé-Thompson, Marco Ludovico-Marques, Noemi Sogari and Adrián Bonilla-Petriciolet
Minerals 2025, 15(9), 917; https://doi.org/10.3390/min15090917 - 28 Aug 2025
Viewed by 362
Abstract
Lithium has emerged as a critical element in contemporary society. It has been classified as an indispensable feedstock in the manufacture of lithium-ion batteries for electric mobility, portable electronics, and stationary energy storage systems, which are essential for the integration of intermittent renewable [...] Read more.
Lithium has emerged as a critical element in contemporary society. It has been classified as an indispensable feedstock in the manufacture of lithium-ion batteries for electric mobility, portable electronics, and stationary energy storage systems, which are essential for the integration of intermittent renewable energy sources. This metal also has other industrial applications and is projected to support future developments in semiconductor and aerospace technology. However, the exponential growth in global Li demand driven by energy transition and technological innovation requires a resilient and sustainable supply chain where both technological and environmental challenges should be addressed. This review discusses and analyzes some of current challenges associated with the Li supply chain given a particular emphasis on its separation methods. First, statistics of the Li market and its applications are provided, including the main sources from which to recover Li and the environmental impact associated with conventional Li extraction techniques from mineral ores and salar brines. Different separation methods (e.g., solvent extraction, adsorption, ion exchange, membrane technology) to recover Li from different sources are reviewed. Recent advances and developments in these separation strategies are described, including a brief analysis of their main limitations and capabilities. The importance and potential of recycling strategies for end-of-life batteries and industrial residues are also highlighted. A perspective on the gaps to be resolved with the aim of consolidating the Li supply chain to support the energy transition agenda is provided in this review. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 2137 KB  
Article
Unraveling the Molecular Composition and Reactivity Differentiation of Algae- and Macrophyte-Derived Dissolved Organic Matter in Plateau Lakes: Insights from Optical Properties and High Resolution Mass Spectrometry Characterization
by Qiuxing Li, Runyu Zhang, Haijun Yuan, Liying Wang and Shuxia Xu
Molecules 2025, 30(17), 3510; https://doi.org/10.3390/molecules30173510 - 27 Aug 2025
Viewed by 304
Abstract
Most lacustrine dissolved organic matter (DOM) still lacks comprehensive environmental sources and molecular characterization, especially in plateau lakes. Herein, macrophytes and algae from contrasting lakes of the Yunnan-Guizhou Plateau, together with Suwannee River fulvic acid (SRFA), were used to characterize the total identified [...] Read more.
Most lacustrine dissolved organic matter (DOM) still lacks comprehensive environmental sources and molecular characterization, especially in plateau lakes. Herein, macrophytes and algae from contrasting lakes of the Yunnan-Guizhou Plateau, together with Suwannee River fulvic acid (SRFA), were used to characterize the total identified DOM (Bulk-DOM) and low-molecular-weight DOM (LMW-DOM, <200 Da). To address this, we combined spectroscopy with Fourier transform ion cyclotron resonance (FT-ICR) and Orbitrap mass spectrometry (MS). Algae-derived DOM (ADOM) exhibited endogenous DOM characteristics, while macrophyte-derived DOM (MDOM) showed the characteristics of endogenous and terrigenous DOM. ADOM contained numerous heteroatoms, with high proportions of proteins, carbohydrates, and lipids. The chemical structures of ADOM were more aliphatic and degradable than that of MDOM. Conversely, MDOM and SRFA had higher degree of humification and aromaticity and showed greater resistance to microbial degradation. The capability of Orbitrap MS to characterize P-containing molecules was superior to FT-ICR MS. Moreover, significant differences were found between FT-ICR and Orbitrap MS in weighted average carbon atom number, weighted average mass-to-charge ratio, carbohydrates, and P-containing compounds. LMW-DOM accounted for approximately 10% of Bulk-DOM. Compared to Bulk-DOM, LMW-DOM was more active than Bulk-DOM because of the reduced state and more N-containing compounds. This study provides a valuable perspective to reveal the molecular characteristics and behaviors of ADOM and MDOM, which has crucial implications for carbon cycling in aquatic ecosystems. Full article
(This article belongs to the Special Issue Current Advances in Environmental Analytical Chemistry)
Show Figures

Graphical abstract

23 pages, 2150 KB  
Article
Visible-Light-Driven Ferrioxalate Activation for Dye Degradation in a Recirculating Photoreactor: LED vs. Fluorescent Light Sources
by Slimane Merouani, Amina Kadri and Halima Chouib
Processes 2025, 13(9), 2716; https://doi.org/10.3390/pr13092716 - 26 Aug 2025
Viewed by 349
Abstract
This study explores the visible-light-driven photolysis of Ferrioxalate complexes for the degradation of Toluidine Blue (TB), a persistent phenothiazine dye, using a 1 L recirculating batch-loop photoreactor. The reactor system incorporated two tubular photochemical units (35 cm × 3 cm each) in series: [...] Read more.
This study explores the visible-light-driven photolysis of Ferrioxalate complexes for the degradation of Toluidine Blue (TB), a persistent phenothiazine dye, using a 1 L recirculating batch-loop photoreactor. The reactor system incorporated two tubular photochemical units (35 cm × 3 cm each) in series: the first equipped with an immersed blue fluorescent lamp (12 W, 30 cm-tube), and the second with dual external blue LED lamps (18 W total, 30 cm) encasing a double-walled glass cell. Continuous flow between the units was maintained via a peristaltic pump. Experimental investigations were used to evaluate the effects of key parameters such as Fe(III) and oxalate concentrations, initial TB load, pH, light source, flow rate, ligand type, dissolved gas type, external H2O2 addition, and the presence of various inorganic ions. The results demonstrate efficient dye degradation, with ~75% TB removal within 1 h under combined fluorescent and LED irradiation, where each reactor contributing comparably. The optimal performance was achieved at pH 4, with a 10 oxalate-to-Fe(III) molar ratio (1 mM:0.1 mM) and a flow rate of 25 mL s−1. Among various ligands tested (oxalate, acetate, citrate, EDTA), oxalate proved to be the most effective. The presence and type of anions significantly influenced degradation efficiency due to their potential scavenging effects. Although the process achieved high dye removal, TOC analysis indicated only moderate mineralization, suggesting the accumulation of non-colored intermediates. External H2O2 addition moderately improved TOC removal, likely due to enhanced hydroxyl radical generation via the Fenton mechanism. These findings highlight the promise of Ferrioxalate-based photochemical systems under visible light for dye removal, while also emphasizing the need for further research into by-product identification, mineralization enhancement, and toxicity reduction to ensure safe effluent discharge. Full article
Show Figures

Figure 1

15 pages, 1150 KB  
Article
Microwave-Assisted Extraction of Phenolic Compounds from Cocoa Pod Husk: Process Optimization and Impact of Drying Temperature on Bioactive Recovery
by Pablo Gomez, Cristhopher Reyes and Jorge G. Figueroa
Molecules 2025, 30(17), 3497; https://doi.org/10.3390/molecules30173497 - 26 Aug 2025
Viewed by 536
Abstract
Cocoa pod husk (CPH), the principal by-product of cocoa processing, represents an abundant and underutilized source of bioactive phenolics with potential applications in the food and nutraceutical sectors. This study optimized the extraction of catechin, epicatechin, procyanidin B2, and clovamide from CPH (CCN-51 [...] Read more.
Cocoa pod husk (CPH), the principal by-product of cocoa processing, represents an abundant and underutilized source of bioactive phenolics with potential applications in the food and nutraceutical sectors. This study optimized the extraction of catechin, epicatechin, procyanidin B2, and clovamide from CPH (CCN-51 variety) using microwave-assisted extraction (MAE) and evaluated the influence of drying temperature on their retention. A Box–Behnken design within a response surface methodology framework was employed to evaluate the effects of ethanol concentration (0–100%), extraction temperature (50–150 °C), and extraction time (15–60 min) on compound recovery. The phenolic profile was characterized by high-performance liquid chromatography with diode-array detection and electrospray ionization ion trap tandem mass spectrometry. Optimal MAE conditions of 51% ethanol, 104 °C, and 38 min yielded maximum concentrations of clovamide, procyanidin B2, and epicatechin of 3440, 908, and 445 mg/kg dry matter of cocoa pod husk, respectively. Drying studies demonstrated that moderate hot-air temperatures (40–50 °C) preserved the highest phenolic levels. These results underscore the importance of optimizing both extraction and drying conditions to enhance the recovery of phenolic compounds from cocoa processing residues, supporting their potential valorization as antioxidant-rich functional ingredients. Full article
Show Figures

Figure 1

13 pages, 1605 KB  
Article
Phytochemical Analysis and Anti-Ulcer Potential of Phenolic Compounds of Inonotus nidus-pici Pilát
by Iliya Slavov, Nadezhda Ivanova, Maya Radeva-Ilieva, Stanila Stoeva-Grigorova, Deyan Dzhenkov and Kaloyan D. Georgiev
Pharmaceuticals 2025, 18(9), 1265; https://doi.org/10.3390/ph18091265 - 25 Aug 2025
Viewed by 331
Abstract
Background/Objectives: Fungotherapy has long been recognized as a therapeutic approach for treating and preventing various diseases. As an important representative of the so-called functional mushrooms, Chaga plays a crucial role in this system. Since this species is of limited distribution in Bulgaria, [...] Read more.
Background/Objectives: Fungotherapy has long been recognized as a therapeutic approach for treating and preventing various diseases. As an important representative of the so-called functional mushrooms, Chaga plays a crucial role in this system. Since this species is of limited distribution in Bulgaria, we are interested in studying a related but different species, Inonotus nidus-pici Pilát, with potential benefits for human health. Methods: The phytochemical composition of phenolic compounds in the studied species was analyzed using spectrophotometric methods and high-performance liquid chromatography (HPLC). Additionally, antioxidant activity was assessed using various assays, and the gastroprotective effect was evaluated in experimental rat models with indomethacin-induced gastric damage. Results: The quantities of the main classes of phenolic compounds in the studied object were determined, and an enriched phenolic extract (EPE) was obtained. The amount of phenolic compounds, in decreasing order, is as follows: tannins (1.67 ± 0.02%), phenolic acids (1.50 ± 0.09%), and flavonoids (1.24 ± 0.04%). Quercetin was the most present flavonoid (15.95 ± 0.05 mg/g DWE), followed by (+)-catechin (9.86 ± 0.15 mg/g DWE) and kaempferol (1.67 ± 0.09 mg/g DWE) in the enriched phenolic extract. The quantity of other established compounds was significantly lower. Of all ten phenolic acids identified in the same extract, the highest concentration was found only for rosmarinic acid (6.41 ± 0.08 mg/g DWE) and somewhat for p-coumaric acid (2.13 ± 0.12 mg/g DWE). Among all the applied methods regarding antioxidant activity, the highest potential of the extract for reducing copper ions was the most pronounced (1506.93 μM TE/g DWE), and the ability of the extract to reduce iron ions was almost the same (1354.05 μM TE/g DWE). In the experimental indomethacin-induced gastric ulcer rat model, EPE (25 mg/kg and 10 mg/kg) demonstrated a dose-dependent gastroprotective effect. Conclusions: The results of the experiments confirm the potential of the wood fungus species as a source of valuable biologically active compounds with beneficial and pharmacological effects. However, further studies are needed to fully determine its chemical composition and the biological activities related to it. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

14 pages, 1559 KB  
Article
Preparation of Air Nanobubble-Laden Diesel
by Jiajun Yang, Xiao Xu, Hui Jin and Qiang Yang
Nanomaterials 2025, 15(17), 1309; https://doi.org/10.3390/nano15171309 - 25 Aug 2025
Viewed by 378
Abstract
This research has successfully addressed the technical challenge of generating nanobubbles in diesel fuel, which inherently lacks hydrophilic structures and charged ions, enabling the effective production of high-concentration nanobubble diesel fuel. This breakthrough lays a solid foundation for subsequent research into the combustion [...] Read more.
This research has successfully addressed the technical challenge of generating nanobubbles in diesel fuel, which inherently lacks hydrophilic structures and charged ions, enabling the effective production of high-concentration nanobubble diesel fuel. This breakthrough lays a solid foundation for subsequent research into the combustion performance and combustion mechanism of high-concentration nanobubble fuels. Furthermore, it holds promising potential to advance high-concentration nanobubble fuel as a viable new type of energy source. A specialized device was designed to generate nanobubble-embedded diesel, and particle tracking analysis with n-hexadecane dilution was employed to quantify nanobubble concentration. The results demonstrate that the nanobubble concentration in diesel increases with both circulation time and pressure, reaching up to 5 × 108 ± 3.1 × 107 bubbles/mL under a pressure of 2.5 MPa. Stability tests indicate an initial rapid decay (50% reduction within one week), followed by a slower decline, which stabilizes at 4.5 × 107 ± 3.13 × 106 bubbles/mL after two months. Notably, nanobubble concentration has a minimal impact on the density and viscosity of diesel but slightly decreases its surface tension. This study presents a feasible method for preparing high-concentration nanobubble diesel, which lays a foundation for investigating the combustion mode and mechanism of nanobubble diesel fuel. With the goal of enhancing combustion efficiency and reducing pollutant emissions, this work further paves the way for the application of high-concentration nanobubble diesel as a new energy source in fields including automotive, marine, and aerospace industries. Full article
(This article belongs to the Special Issue Nanobubbles and Nanodroplets: Current State-of-the-Art)
Show Figures

Figure 1

Back to TopTop