Catalyst-Assisted Large-Area Growth of Single-Crystal β-Ga2O3 Nanowires on Sapphire Substrates by Metal–Organic Chemical Vapor Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth of β-Ga2O3 Nanowires
2.2. Characterization Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mazeina, L.; Picard, Y.N.; Maximenko, S.I.; Perkins, F.K.; Glaser, E.R.; Twigg, M.E.; Freitas, J.A.; Prokes, S.M. Growth of Sn-Doped β-Ga2O3 Nanowires and Ga2O3−SnO2 Heterostructures for Gas Sensing Applications. Cryst. Growth Des. 2009, 9, 4471–4479. [Google Scholar] [CrossRef]
- Kim, H.; Jin, C.; An, S.; Lee, C. Fabrication and CO Gas-sensing Properties of Pt-functionalized Ga2O3 Nanowires. Ceram. Int. 2012, 38, 3563–3567. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Development of Gallium Oxide Power Devices. Phys. Status Solidi A 2014, 211, 21–26. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Kuramata, A.; Murakami, H.; Kumagai, Y. State-of-the-art Technologies of Gallium Oxide Power Devices. J. Phys. D: Appl. Phys. 2017, 50, 333002. [Google Scholar] [CrossRef]
- Feng, P.; Zhang, J.Y.; Li, Q.H.; Wang, T.H. Individual β-Ga2O3 nanowires as solar-blind photodetectors. Appl. Phys. Lett. 2006, 88, 153107. [Google Scholar] [CrossRef]
- Wang, S.; Sun, H.; Wang, Z.; Zeng, X.; Ungar, G.; Guo, D.; Shen, J.; Li, P.; Liu, A.; Li, C.; et al. In Situ Synthesis of Monoclinic β-Ga2O3 Nanowires on Flexible Substrate and Solar-blind Photodetector. J. Alloys Compd. 2019, 787, 133–139. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lu, Y.-J.; Liu, Q.; Lin, C.-N.; Guo, J.; Zang, J.-H.; Tian, Y.-Z.; Shan, C.-X. Ga2O3 Photodetector Arrays for Solar-blind Imaging. J. Mater. Chem. C 2019, 7, 2557–2562. [Google Scholar] [CrossRef]
- Wei, T.-C.; Tsai, D.-S.; Ravadgar, P.; Ke, J.-J.; Tsai, M.-L.; Lien, D.-H.; Huang, C.-Y.; Horng, R.-H.; He, J.-H. See-Through Ga2O3 Solar-Blind Photodetectors for Use in Harsh Environments. IEEE J. Select. Top. Quantum Electron. 2014, 20, 112–117. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Kong, Y.C.; Wang, Y.Z.; Du, X.; Bai, Z.G.; Wang, J.J.; Yu, D.P.; Ding, Y.; Hang, Q.L.; Feng, S.Q. Ga2O3 Nanowires Prepared by Physical Evaporation. Solid State Commun. 1999, 109, 677–682. [Google Scholar] [CrossRef]
- Nogales, E.; García, J.Á.; Méndez, B.; Piqueras, J. Doped Gallium Oxide Nanowires with Waveguiding Behavior. Appl. Phys. Lett. 2007, 91, 133108. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo, A.; Nogales, E.; Méndez, B.; Piqueras, J. Influence of Growth Temperature on the Morphology and Luminescence of Ga2O3:Mn Nanowires. Phys. Status Solidi A 2014, 211, 494–497. [Google Scholar] [CrossRef]
- Gonzalo, A.; Nogales, E.; Lorenz, K.; Víllora, E.G.; Shimamura, K.; Piqueras, J.; Méndez, B. Raman and Cathodoluminescence Analysis of Transition Metal Ion Implanted Ga2O3 Nanowires. J. Lumin. 2017, 191, 56–60. [Google Scholar] [CrossRef]
- Park, G.-S.; Choi, W.-B.; Kim, J.-M.; Choi, Y.C.; Lee, Y.H.; Lim, C.-B. Structural Investigation of Gallium Oxide (β-Ga2O3) Nanowires Grown by Arc-discharge. J. Cryst. Growth 2000, 220, 494–500. [Google Scholar] [CrossRef]
- Cha, S.Y.; Ahn, B.-G.; Kang, H.C.; Lee, S.Y.; Noh, D.Y. Direct Conversion of β-Ga2O3 Thin Films to β-Ga2O3 Nanowires by Annealing in a Hydrogen Atmosphere. Ceram. Int. 2018, 44, 16470–16474. [Google Scholar] [CrossRef]
- Chang, K.-W.; Wu, J.-J. Low-Temperature Growth of Well-Aligned β-Ga2O3 Nanowires from a Single-Source Organometallic Precursor. Adv. Mater. 2004, 16, 545–549. [Google Scholar] [CrossRef]
- Liang, C.H.; Meng, G.W.; Wang, G.Z.; Wang, Y.W.; Zhang, L.D.; Zhang, S.Y. Catalytic Synthesis and Photoluminescence of β-Ga2O3 Nanowires. Appl. Phys. Lett. 2001, 78, 3202–3204. [Google Scholar] [CrossRef]
- Sharma, S.; Sunkara, M.K. Direct Synthesis of Gallium Oxide Tubes, Nanowires, and Nanopaintbrushes. J. Am. Chem. Soc. 2002, 124, 12288–12293. [Google Scholar] [CrossRef]
- Chun, H.J.; Choi, Y.S.; Bae, S.Y.; Seo, H.W.; Hong, S.J.; Park, J.; Yang, H. Controlled Structure of Gallium Oxide Nanowires. J. Phys. Chem. B 2003, 107, 9042–9046. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, V.; Singh, R. Diameter Tuning of β-Ga2O3 Nanowires Using Chemical Vapor Deposition Technique. Nanoscale Res. Lett. 2017, 12, 184. [Google Scholar] [CrossRef] [Green Version]
- Ning, J.Q.; Xu, S.J.; Wang, P.W.; Song, Y.P.; Yu, D.P.; Shan, Y.Y.; Lee, S.T.; Yang, H. Microstructure and Micro-Raman Studies of Nitridation and Structure transition of Gallium Oxide Nanowires. Mater. Charact. 2012, 73, 153–157. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, N.H. Formation of Amorphous and Crystalline Gallium Oxide Nanowires by Metalorganic Chemical Vapor Deposition. Appl. Surf. Sci. 2004, 233, 294–298. [Google Scholar] [CrossRef]
- Kim, H.W.; Shim, S.H. Characteristics of Gallium Oxide Nanowires Synthesized by the Metalorganic Chemical Vapor Deposition. MSF 2007, 539–543, 1230–1235. [Google Scholar] [CrossRef]
- Kim, N.H.; Kim, H.W.; Seoul, C.; Lee, C. Amorphous Gallium Oxide Nanowires Synthesized by Metalorganic Chemical Vapor Deposition. Mater. Sci. Eng. B 2004, 111, 131–134. [Google Scholar] [CrossRef]
- Wu, X.C.; Song, W.H.; Huang, W.D.; Pu, M.H.; Zhao, B.; Sun, Y.P.; Du, J.J. Crystalline Gallium Oxide Nanowires: Intensive Blue Light Emitters. Chem. Phys. Lett. 2000, 328, 5–9. [Google Scholar] [CrossRef]
- Quan, Y.; Fang, D.; Zhang, X.; Liu, S.; Huang, K. Synthesis and Characterization of Gallium Oxide Nanowires via a Hydrothermal Method. Mater. Chem. Phys. 2010, 121, 142–146. [Google Scholar] [CrossRef]
- Sadan, H.; Kaplan, W.D. Au–Sapphire (0001) Solid–solid Interfacial Energy. J. Mater. Sci. 2006, 41, 5099–5107. [Google Scholar] [CrossRef]
- Rao, R.; Rao, A.M.; Xu, B.; Dong, J.; Sharma, S.; Sunkara, M.K. Blue Shifted Raman Scattering and Its Correlation with the [110] Growth Direction in Gallium Oxide Nanowires. J. Appl. Phys. 2005, 98, 94312. [Google Scholar] [CrossRef]
- Dohy, D.; Lucazeau, G.; Revcolevschi, A. Raman Spectra and Valence Force Field of Single-crystalline β-Ga2O3. J. Solid State Chem. 1982, 45, 180–192. [Google Scholar] [CrossRef]
- Nakagomi, S.; Kokubun, Y. Crystal Orientation of β-Ga2O3 Thin Films Formed on C-plane and A-plane Sapphire Substrate. J. Cryst. Growth 2012, 349, 12–18. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A Review of Ga2O3 Materials, Processing, and Devices. Appl. Phys. Rev. 2018, 5, 11301. [Google Scholar] [CrossRef] [Green Version]
- Oshima, T.; Okuno, T.; Fujita, S. Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors. Jpn. J. Appl. Phys. 2007, 46, 7217–7220. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Li, Q.; Qu, C.; Zhang, L.; Xie, W. Optical and Structural Properties of Cu-doped β- Ga2O3 Films. Mat. Sci. Eng. B 2011, 176, 846–849. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, D.; Chen, K.; Su, Y.; Wang, S.; Li, P.; Tang, W. Stabilizing the Metastable γ Phase in Ga2O3 Thin Films by Cu Doping. J. Alloys Compd. 2018, 731, 1225–1229. [Google Scholar] [CrossRef]
- Huang, L.; Feng, Q.; Han, G.; Li, F.; Li, X.; Fang, L.; Xing, X.; Zhang, J.; Hao, Y. Comparison Study of β-Ga2O3 Photodetectors Grown on Sapphire at Different Oxygen Pressures. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Ratnaparkhe, A.; Lambrecht, W.R.L. Quasiparticle Self-consistent GW Band Structure of β -Ga 2 O 3 and the Anisotropy of the Absorption Onset. Appl. Phys. Lett. 2017, 110, 132103. [Google Scholar] [CrossRef]
- Li, Y.; Tokizono, T.; Liao, M.; Zhong, M.; Koide, Y.; Yamada, I.; Delaunay, J.-J. Efficient Assembly of Bridged β-Ga2O3 Nanowires for Solar-Blind Photodetection. Adv. Funct. Mater. 2010, 20, 3972–3978. [Google Scholar] [CrossRef]
- McCluskey, M.D. Point Defects in Ga2O3. J. Appl. Phys. 2020, 127, 101101. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, C.; Jeon, D.-W.; Xu, J.; Yi, X.; Park, J.-H.; Zhang, Y. Catalyst-Assisted Large-Area Growth of Single-Crystal β-Ga2O3 Nanowires on Sapphire Substrates by Metal–Organic Chemical Vapor Deposition. Nanomaterials 2020, 10, 1031. https://doi.org/10.3390/nano10061031
Jia C, Jeon D-W, Xu J, Yi X, Park J-H, Zhang Y. Catalyst-Assisted Large-Area Growth of Single-Crystal β-Ga2O3 Nanowires on Sapphire Substrates by Metal–Organic Chemical Vapor Deposition. Nanomaterials. 2020; 10(6):1031. https://doi.org/10.3390/nano10061031
Chicago/Turabian StyleJia, Chunyang, Dae-Woo Jeon, Jianlong Xu, Xiaoyan Yi, Ji-Hyeon Park, and Yiyun Zhang. 2020. "Catalyst-Assisted Large-Area Growth of Single-Crystal β-Ga2O3 Nanowires on Sapphire Substrates by Metal–Organic Chemical Vapor Deposition" Nanomaterials 10, no. 6: 1031. https://doi.org/10.3390/nano10061031
APA StyleJia, C., Jeon, D. -W., Xu, J., Yi, X., Park, J. -H., & Zhang, Y. (2020). Catalyst-Assisted Large-Area Growth of Single-Crystal β-Ga2O3 Nanowires on Sapphire Substrates by Metal–Organic Chemical Vapor Deposition. Nanomaterials, 10(6), 1031. https://doi.org/10.3390/nano10061031