Highly Porous Au–Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Au–Pt HP-UNCs
2.3. Synthesis of Rounded Au–Pt UNCs
2.4. Electrocatalysis
2.5. Characterization
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hong, J.W.; Kim, Y.; Kwon, Y.; Han, S.W. Noble-metal nanocrystals with controlled facets for electrocatalysis. Chem. Asian J. 2016, 11, 2224–2239. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.W.; Kang, S.W.; Choi, B.-S.; Kim, D.; Lee, S.B.; Han, S.W. Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 2012, 6, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Kuang, Y.; Zhang, X.; Chen, J. Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today 2011, 6, 75–90. [Google Scholar] [CrossRef]
- Yin, A.-X.; Min, X.-Q.; Zhang, Y.-W.; Yan, C.-H. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt−Pd tetrahedrons and cubes. J. Am. Chem. Soc. 2011, 133, 3816–3819. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, X.; Yao, Z.; Bai, H.; Lu, Y.; Ma, C.; Lu, S.; Peng, Z.; Yang, J.; Pan, A. Unconventional p–d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Kim, Y.; Bando, Y.; Yamauchi, Y.; Hong, J.W. Shape-controlled Pd nanocrystal–polyaniline heteronanostructures with modulated polyaniline thickness for efficient electrochemical ethanol oxidation. J. Mater. Chem. A 2019, 7, 22029–22035. [Google Scholar] [CrossRef]
- Guo, W.; Johnston-Peck, A.; Zhang, Y.; Hu, Y.; Huang, J.; Wei, W.D. Cooperation of hot holes and surface adsorbates in plasmon-driven anisotropic growth of gold nanostars. J. Am. Chem. Soc. 2020, 142, 10921–10925. [Google Scholar] [CrossRef]
- Yun, Q.; Lu, Q.; Li, C.; Chen, B.; Zhang, Q.; He, Q.; Hu, Z.; Zhang, Z.; Ge, Y.; Yang, N. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano 2019, 13, 14329–14336. [Google Scholar] [CrossRef]
- Bang, J.; Das, S.; Yu, E.-J.; Kim, K.; Lim, H.; Kim, S.; Hong, J.W. Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction. Nano Lett. 2020, 20, 6263–6271. [Google Scholar] [CrossRef]
- Saleem, F.; Zhang, Z.; Xu, B.; Xu, X.; He, P.; Wang, X. Ultrathin Pt–Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307. [Google Scholar] [CrossRef]
- Ma, H.; Chen, P.; Li, B.; Li, J.; Ai, R.; Zhang, Z.; Sun, G.; Yao, K.; Lin, Z.; Zhao, B. Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 2018, 18, 3523–3529. [Google Scholar] [CrossRef]
- Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J.-Y.; Su, D. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414. [Google Scholar] [CrossRef]
- Ledezma-Yanez, I.; Wallace, W.D.Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J.M.; Koper, M.T. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17031. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.W.; Kim, Y.; Wi, D.H.; Lee, S.; Lee, S.U.; Lee, Y.W.; Choi, S.I.; Han, S.W. Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem. Int. Ed. 2016, 55, 2753–2758. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.W.; Kim, D.; Lee, Y.W.; Kim, M.; Kang, S.W.; Han, S.W. Atomic-distribution-dependent electrocatalytic activity of Au–Pd bimetallic nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 8876–8880. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.Y.; Park, S.; Lee, H.; Kim, H.; Chung, Y.-H.; Yoo, J.M.; Ahn, D.; Yu, S.-H.; Lee, K.-S.; Ahmadi, M. Activity–stability relationship in Au@Pt nanoparticles for electrocatalysis. ACS Energy Lett. 2020, 5, 2827–2834. [Google Scholar] [CrossRef]
- Wang, H.; Hao, H.; Li, Y. Size-dependent electrochemistry and electrocatalysis at single Au@Pt bimetallic nanoparticles. J. Phys. Chem. C 2020, 124, 24740–24746. [Google Scholar] [CrossRef]
- Jiang, J.; Lei, J.; Hu, Y.; Bi, W.; Xu, N.; Li, Y.; Chen, X.; Jiang, H.; Li, C. Electron transfer effect from Au to Pt in Au–Pt/TiO2 towards efficient catalytic activity in CO oxidation at low temperature. Appl. Surf. Sci. 2020, 521, 146447. [Google Scholar] [CrossRef]
- Cao, Y.; Xiahou, Y.; Xing, L.; Zhang, X.; Li, H.; Wu, C.; Xia, H. Fe(ii)-Assisted one-pot synthesis of ultra-small core–shell Au–Pt nanoparticles as superior catalysts towards the HER and ORR. Nanoscale 2020, 12, 20456–20466. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, Y.; Muller, D.A.; Abruña, H.D.; Dimitrov, N.; Fang, J. Enhanced ORR kinetics on Au-Doped Pt–Cu porous films in alkaline media. ACS Catal. 2020, 10, 9967–9976. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Wu, C.; Li, H.; Cao, Y.; Li, S.; Xia, H. Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards ORR and HER. J. Mater. Chem. A 2020. [Google Scholar] [CrossRef]
- Du, R.; Jin, W.; Hübner, R.; Zhou, L.; Hu, Y.; Eychmüller, A. Engineering multimetallic aerogels for pH-Universal HER and ORR electrocatalysis. Adv. Energy Mater. 2020, 10, 1903857. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.; Jiang, M.; Camargo, P.H.; Cho, E.C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305. [Google Scholar] [CrossRef] [Green Version]
- Ataee-Esfahani, H.; Imura, M.; Yamauchi, Y. All-metal mesoporous nanocolloids: Solution-phase synthesis of Core–Shell Pd@Pt nanoparticles with a designed concave surface. Angew. Chem. Int. Ed. 2013, 52, 13611–13615. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Hong, J.W.; Lee, Y.W.; Kim, M.; Kim, D.; Yun, W.S.; Han, S.W. Synthesis of AuPt heteronanostructures with enhanced electrocatalytic activity toward oxygen reduction. Angew. Chem. Int. Ed. 2010, 49, 10197–10201. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Im, M.; Hong, J.W.; Han, S.W. Dendritic ternary alloy nanocrystals for enhanced electrocatalytic oxidation reactions. ACS Appl. Mater. Interfaces 2017, 9, 44018–44026. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Kim, J.; Lee, S.U.; Choi, S.I.; Hong, J.W. Synthesis of Pd-Pt ultrathin assembled nanosheets as highly efficient electrocatalysts for ethanol oxidation. Chem. Asian J. 2020, 15, 1324–1329. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Peng, Y.; Li, L.; Tao, R.; Tan, L.; Qiu, M.; Guo, L. One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation. Nano Res. 2018, 11, 3222–3232. [Google Scholar] [CrossRef]
- Habrioux, A.; Diabaté, D.; Rousseau, J.; Napporn, T.W.; Servat, K.; Guétaz, L.; Trokourey, A.; Kokoh, K.B. Electrocatalytic activity of supported Au–Pt nanoparticles for CO oxidation and O2 reduction in alkaline medium. Electrocatalysis 2010, 1, 51–59. [Google Scholar] [CrossRef]
- Obradović, M.D.; Tripković, A.V.; Gojković, S.L. The origin of high activity of Pt–Au surfaces in the formic acid oxidation. Electrochim. Acta 2009, 55, 204–209. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, Z.; Liu, J.; Liu, S.; Xu, C.; Duan, A.; Jiang, G. Multifunctional catalysts of three-dimensionally ordered macroporous oxide-supported Au@Pt core–shell nanoparticles with high catalytic activity and stability for soot oxidation. J. Catal. 2014, 317, 62–74. [Google Scholar] [CrossRef]
- Bian, T.; Zhang, H.; Jiang, Y.; Jin, C.; Wu, J.; Yang, H.; Yang, D. Epitaxial growth of twinned Au–Pt core–shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 2015, 15, 7808–7815. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, G.; Liu, Y.; Liu, H.; Qu, J.; Li, J. Highly efficient AuPd/carbon nanotube nanocatalysts for the electro-fenton process. Chem. Eur. J. 2015, 21, 7611–7620. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.C.; Hong, J.W. Highly Porous Au–Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation. Nanomaterials 2021, 11, 112. https://doi.org/10.3390/nano11010112
Kim HC, Hong JW. Highly Porous Au–Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation. Nanomaterials. 2021; 11(1):112. https://doi.org/10.3390/nano11010112
Chicago/Turabian StyleKim, Heon Chul, and Jong Wook Hong. 2021. "Highly Porous Au–Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation" Nanomaterials 11, no. 1: 112. https://doi.org/10.3390/nano11010112
APA StyleKim, H. C., & Hong, J. W. (2021). Highly Porous Au–Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation. Nanomaterials, 11(1), 112. https://doi.org/10.3390/nano11010112