First Phenol Carboxylation with CO2 on Carbon Nanostructured C@Fe-Al2O3 Hybrids in Aqueous Media under Mild Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Analytical Methods
2.3. Phenol Conversion
3. Results
3.1. Characterization of the Hybrid Precursors
3.2. Characterization of the C@Fe–Al2O3 Hybrids
3.3. Phenol Conversion in C@Fe–Al2O3 Hybrids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dabral, S.; Schaub, T. The use of carbon dioxide (CO2) as a building block in organic synthesis from an industrial perspective. Adv. Synth. Catal. 2019, 361, 223–246. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(III)—Princes complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169. [Google Scholar] [CrossRef] [PubMed]
- Van der Ham, L.; van der Berg, H.; Benneker, A.; Simmelink, G.; Timmer, J.; Van Weerden, S. Hydrogenation of carbon dioxide for methanol production. Chem. Eng. Trans. 2012, 29, 181–186. [Google Scholar] [CrossRef]
- Fujiwara, M.; Sakurai, H.; Shiokawa, K.; Iizuka, Y. Synthesis of C2+ hydrocarbons by CO2 hydrogenation over the composite catalyst Cu-Zn-Al oxide and HB zeolite using two-stage reactor system under low pressure. Catal. Today 2015, 242, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yuan, X.; Fujimoto, K. Direct synthesis of LPG from carbon dioxide over hybrid catalyst comprising modified methanol synthesis catalyst and beta-type. App. Catal. A 2014, 475, 155–160. [Google Scholar] [CrossRef]
- Li, C.; Fujimoto, K. Efficient conversion of carbon dioxide to non-methane light hydrocarbons—Two stage process with intercooler. Fuel Proc. Technol. 2015, 136, 50–55. [Google Scholar] [CrossRef]
- Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 2012, 256, 1384–1405. [Google Scholar] [CrossRef]
- Rabie, A.M.; Betiha, M.A.; Park, S.-E. Direct synthesis of acetic acid by simultaneous co-activation of methane and CO2 over Cu-exchaged ZSM-5 catalyst. Appl. Catal. B Environ. 2017, 215, 50–59. [Google Scholar] [CrossRef]
- Pescarmona, P.; Taherimehr, M. Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2. Catal. Sci. Technol. 2012, 20, 2169–2187. [Google Scholar] [CrossRef]
- Guo, C.-X.; Ma, R.; He, L.-N. Metal-promoted synthesis of cyclic carbonates from 1,2-diols and carbon dioxide. Open Org. Chem. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Kikuchi, S.; Yoshida, S.; Sugawara, Y.; Yamada, W.; Cheng, H.-M.; Fukui, K.; Kohei, S.; Izumi, I.; Taketo, I.; Tohru, Y. Silver-catalyzed carbon dioxide incorporation and rearrangement on propargylic derivates. Bull. Chem. Soc. Jpn. 2011, 7, 698–717. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Moncada, A.I.; Choi, W.; Reibenspies, J.H. Mechanistic studies of the copolymerization reaction od oxetane and carbon dioxide to provide aliphatic polycarbonates catalyzed by (salen) CrX complexes. J. Am. Chem. Soc. 2008, 130, 6523–6533. [Google Scholar] [CrossRef] [PubMed]
- Omae, I. Aspects of carbon dioxide utilization. Catal. Today 2006, 115, 33–52. [Google Scholar] [CrossRef]
- Arayachukiat, S.; Yingcharoen, P.; Vummaleti Sai, V.C.; Cavallo, L.; Poater, A.; D’Elia, V. Cycloaddition of CO2 to challenging N-tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights. Mol. Catal. 2017, 443, 280–285. [Google Scholar] [CrossRef]
- Kolbe, E.; Lautemann, H. Ueber die Constitution und Basicitat der Salicyl saüre. Ann. Chem. Pharm. 1860, 113, 157–206. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, R. Beitrag zur Kenntuiss der Kolbe’schen Salicyl-säure-Synthese. J. Pratk. Chem. 1885, 31, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Baine, O.; Adamson, G.F.; Barton, J.W.; Fitch, J.L.; Swayampati, D.R.; Jeskey, H. A study of the Kolbe- Schmitt reaction. II The carbonation of phenols. J. Org. Chem. 1953, 19, 510–514. [Google Scholar] [CrossRef]
- Lindsey, A.S.; Jeskey, H. The Kolbe Schmitt Reaction. Chem. Rev. 1957, 57, 583–620. [Google Scholar] [CrossRef]
- Peters, G.P.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Friedlingstein, P.; Ilyina, T.; Joos, F.; Korsbakken, J.I.; McKinley, G.A.; Sitch, S.; et al. Towards real-time verification of CO2 emissions. Nat. Clim. Chang. 2017, 7, 848–850. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.B.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Peters, G.P.; Roy, J.; Wu, L. Warning signs for stabilizing global CO2 emissions. Environ. Res. Lett. 2017, 12, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, F. Enciclopedia de Química Industrial Vol III: Urea; Gustavo Gili: Sao Paulo, Brazil, 1950. [Google Scholar]
- Alper, E.; Yuksel Orhan, O. CO2 utilization: Developments in conversion processes. Petroleum 2017, 3, 109–126. [Google Scholar] [CrossRef]
- Alvarez-Rodriguez, J.; Soria-Sanchez, M.; Calvo-Castañera, F.; Maroto-Valiente, A. Selection of iron precursors for preparation of 3D-solids of hydrophobic composites with γ-alumina and carbon nanostructures materials. J. Clean. Prod. 2019, 234, 290–297. [Google Scholar] [CrossRef]
- ASTM E394-00. Standard Test Method for Iron in Trace Quantities Using 1,12-Phenanthroline Method; American Society for Testing and Materials: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschk, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectra analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Cançado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. App. Phys. Lett. 2006, 88, 1631061–1631063. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Pawlyta, M.; Rouzaud, J.-N.; Duber, S. Raman microespectroscopy characterization of carbon blacks: Spectral analysis and structural information. Carbon 2015, 84, 479–490. [Google Scholar] [CrossRef]
- Fairley, N. Casa Software Version 2.3.23 Ltd. 2020. Available online: http://www.casaxps.com (accessed on 1 November 2020).
- Cejka, J. Organized mesoporous alumina: synthesis, structure and potential in catalysis. Appl. Catal. A 2003, 254, 327–338. [Google Scholar] [CrossRef]
- Cava, S.; Tebcherani, S.M.; Souza, I.A.; Pianaro, S.A.; Paskocimas, C.A.; Longo, E.; Valera, J.A. Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater. Chem. Phys. 2007, 103, 394–399. [Google Scholar] [CrossRef]
- Souza Santos, P.; Souza Santos, H.; Toledo, S.P. Standard transition aluminas. Electron microscopy studies. Mater. Res. 2000, 3, 104–114. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Dillon, R.O.; Woolland, J. Use the Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B 1984, 29, 3482–3489. [Google Scholar] [CrossRef]
- López-Díaz, D.; López Holgado, M.; García-Fierro, J.L.; Velázquez, M.M. Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide. J. Phys. Chem. C 2017, 121, 20489–20497. [Google Scholar] [CrossRef]
- Cai, J.; Naraghi, M. Non-intertwined graphitic domains leads to super strong and tough continuous 1D nanostructures. Carbon 2018, 137, 242–251. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, Y.; Duan, X.; Zhou, S.; Niu, Y.; Sun, H.; Zhi, L.; Wang, S. Unzipping carbon nanotubes to nanoribbons for revealing the mechanism of nonradical oxidation by carbocatalysis. Appl. Catal. B Environ. 2020, 276, 119146. [Google Scholar] [CrossRef]
- Yokoyama, K.; Sato, Y.; Yamamoto, M.; Nishida, T.; Itoh, T.; Motomiya, K.; Sato, Y. Functionalization of primary amine groups to single-walled carbon nanotubes by reacting fluorinated SWCNTs with ammonia gas at a low temperature. Carbon 2021, 172, 360–371. [Google Scholar] [CrossRef]
- Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopy characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565. [Google Scholar] [CrossRef]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J.M.D. Raman microprobe studies on carbon materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Leiro, J.A.; Heinonen, M.H.; Laiho, T.; Batirev, I.G. Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon. J. Electron. Spectros. Relat. Phenom. 2003, 128, 205–213. [Google Scholar] [CrossRef]
- Blume, R.; Rosenthal, D.; Tessonnier, J.-P.; Li, H.; Knop-Gericke, A.; Schlögl, R. Characterizing graphitic carbon with x-ray photoelectron spectroscopy: A step-by-step approach. ChemCatChem 2015, 7, 2871–2881. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, A.; Yamada, Y.; Koinuma, M.; Sato, S. Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal. Chem. 2016, 88, 6110–6114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovtun, A.; Jones, D.; Dell’Elce, S.; Treossi, E.; Liscio, A.; Palermo, V. Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy. Carbon 2019, 143, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Soria-Sánchez, M.; Maroto-Valiente, A.; Álvarez-Rodríguez, J.; Muñoz-Andrés, V.; Rodríguez-Ramos, I.; Guerrero-Ruíz, A. Carbon nanostrutured materials as direct catalysts for phenol oxidation in aqueous phase. Appl. Catal. B Environ. 2011, 104, 101–109. [Google Scholar] [CrossRef]
- Maestro, A.; Bonales, L.J.; Ritacco, H.; Rubio, R.G.; Ortega, F. Effect of the spreading solvent on the three-phase contact angle of microparticles attached at fluid interfaces. Phys. Chem. Chem. Phys. 2010, 12, 14115–14120. [Google Scholar] [CrossRef]
- Maestro, A.; Guzmán, E.; Ortega, F.; Rubio, R.G. Contact angle of micro-and nanoparticles at fluid interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 355–367. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Tran, H.N.; Plamondon, C.O.; Tuduri, L.; Vo, D.-V.N.; Nanda, S.; Mishra, A.; Chao, H.-P.; Bajpai, A.K. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog. Org. Coat. 2019, 132, 235–256. [Google Scholar] [CrossRef]
- Celia, E.; Darmanin, T.; de Givenchy, E.T.; Amigoni, S.; Guittard, F. Recent advances in designing superhydrophobic surfaces. J. Colloid Interface Sci. 2013, 402, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Zhang, W.; Lan, X.; Lin, H. CO2 Reduction to Methanol in the Liquid Phase: A Review. ChemSusChem 2020, 13, 1–20. [Google Scholar] [CrossRef]
- Bonetto, R.; Crisanti, F.; Sartorel, A. Carbon Dioxide Reduction Mediated by Iron Catalysts: Mechanism and Intermediates That Guide Selectivity. ACS Omega 2020, 5, 21309–21319. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.; Jeskey, H.; Baine, A. The Kolbe-Schmitt reaction. I. Variations in the carbonation of p-cresol. J. Org. Chem. 1950, 15, 233–236. [Google Scholar] [CrossRef]
- Cason, J.; Dyke, G.O., Jr. Preparation of 2,3-Dihydroxybenzoic Acid. J. Am. Chem. Soc. 1950, 72, 621–622. [Google Scholar] [CrossRef]
- Luo, J.; Preciado, S.; Xie, P.; Larrosa, I. Carboxylation of phenols with CO2 at atmospheric pressure. Chem. Eur. J. 2016, 22, 6798–6802. [Google Scholar] [CrossRef] [PubMed]
- Hales, J.L.; Idris Jones, J.; Lindsey, A.S. Mechanism of the Kolbe–Schmitt reaction. Part I. Infra-red studies. J. Chem. Soc. 1954, 3145–3151. [Google Scholar] [CrossRef]
- Liu, M.; Yi, Y.; Wang, L.; Guo, H.; Bogaerts, A. Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis. Catalysts 2019, 9, 275. [Google Scholar] [CrossRef] [Green Version]
Sample | Average Pore Size 1 (nm) | Pore Volume 1 (cm3 g−1) | SBET (cm3 g−1) |
---|---|---|---|
γ-Al2O3 | 4.6 | 0.42 | 293 |
FeAl | 5.0 | 0.40 | 247 |
FeAlR-723 | 4.8 | 0.38 | 255 |
FeAlR-823 | 4.7 | 0.40 | 255 |
FeAlR-923 | 5.0 | 0.39 | 221 |
FeAlR-1023 | 5.7 | 0.41 | 193 |
FeAlR-1123 | 7.3 | 0.42 | 155 |
Sample | SBET (cm3 g−1) | Carbon 1 (wt%) | T1 (K) | Carbon (wt%) | FWHM (K) | T2 (K) | Carbon (wt%) | FWHM (K) |
---|---|---|---|---|---|---|---|---|
C@Al-723 | 46 | 22.4 | 692 | 100 | 85.7 | - | - | - |
C@Al-823 | 66 | 19.4 | 745 | 64.2 | 59.7 | 817 | 35.8 | 60.0 |
C@Al-923 | 142 | 18.0 | 731 | 64.3 | 29.1 | 811 | 35.7 | 57.8 |
C@Al-1023 | 145 | 12.6 | 721 | 54.7 | 60.9 | 809 | 45.3 | 56.2 |
Hybrid Sample | D1 1 | D2 | D3 | D | G 2 | ID3/IG | La 3 nm | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cm−1 | FWHM | cm−1 | FWHM | cm−1 | FWHM | cm−1 | FWHM | cm−1 | FWHM | |||
C@Al-723 | 1233 | 98 | 1611 | 42 | 1500 | 174 | 1343 | 161 | 1588 | 50 | 0.62 | 5.19 |
C@Al-823 | 1180 | 89 | 1611 | 40 | 1508 | 159 | 1341 | 161 | 1589 | 66 | 0.38 | 7.24 |
C@Al-923 | 1197 | 100 | 1611 | 31 | 1508 | 144 | 1338 | 127 | 1594 | 56 | 0.38 | 7.58 |
C@Al-1023 | 1200 | 112 | 1612 | 21 | 1504 | 142 | 1342 | 130 | 1589 | 62 | 0.28 | 8.11 |
Hybrid | C1s (wt%) | sp2/sp3 | O/C | ||
---|---|---|---|---|---|
Sample | C=C | C–C | C–O | Ratio | Ratio |
C@Al-723 | 41.40 | 44.53 | 14.07 | 0.99 | 0.15 |
C@Al-823 | 44.41 | 52.41 | 3.18 | 1.10 | 0.03 |
C@Al-923 | 68.08 | 26.25 | 5.68 | 2.66 | 0.06 |
C@Al-1023 | 72.11 | 19.11 | 8.78 | 3.77 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvo-Castañera, F.; Álvarez-Rodríguez, J.; Candela, N.; Maroto-Valiente, Á. First Phenol Carboxylation with CO2 on Carbon Nanostructured C@Fe-Al2O3 Hybrids in Aqueous Media under Mild Conditions. Nanomaterials 2021, 11, 190. https://doi.org/10.3390/nano11010190
Calvo-Castañera F, Álvarez-Rodríguez J, Candela N, Maroto-Valiente Á. First Phenol Carboxylation with CO2 on Carbon Nanostructured C@Fe-Al2O3 Hybrids in Aqueous Media under Mild Conditions. Nanomaterials. 2021; 11(1):190. https://doi.org/10.3390/nano11010190
Chicago/Turabian StyleCalvo-Castañera, Feliciano, Jesús Álvarez-Rodríguez, Nuria Candela, and Ángel Maroto-Valiente. 2021. "First Phenol Carboxylation with CO2 on Carbon Nanostructured C@Fe-Al2O3 Hybrids in Aqueous Media under Mild Conditions" Nanomaterials 11, no. 1: 190. https://doi.org/10.3390/nano11010190
APA StyleCalvo-Castañera, F., Álvarez-Rodríguez, J., Candela, N., & Maroto-Valiente, Á. (2021). First Phenol Carboxylation with CO2 on Carbon Nanostructured C@Fe-Al2O3 Hybrids in Aqueous Media under Mild Conditions. Nanomaterials, 11(1), 190. https://doi.org/10.3390/nano11010190