Nanocomposite PLA/C20A Nanoclay by Ultrasound-Assisted Melt Extrusion for Adsorption of Uremic Toxins and Methylene Blue Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Chemical Modification of Cloisite 20A by Ultrasonic Tip
2.2.2. Composite Preparation by an Ultrasound-Assisted Melt Extrusion Process
2.3. Characterization
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.2. X-ray Diffraction (XRD)
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. X-ray Photoelectron Spectroscopy
2.3.5. Scanning Electron Microscopy (SEM)
2.3.6. Transmission Electron Microscopy (TEM)
2.3.7. Adsorption Uremic Toxins
2.3.8. Adsorption of Methylene Blue
2.3.9. Desorption Studies
3. Results and Discussion
3.1. C20A Nanoclay Modification
3.1.1. Thermogravimetric Analysis (TGA)
3.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.3. X-ray Diffraction (XRD)
3.1.4. Transmission Electron Microscopy (TEM)
3.2. Nanocomposites
3.2.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.2. X-ray Diffraction (XRD)
3.2.3. X-ray Photoelectron Spectroscopy
3.2.4. Thermogravimetric Analysis (TGA)
3.2.5. Scanning Electron Microscopy of Nanocomposites (SEM)
3.3. Adsorption of Uremic Toxins and Dyes
3.3.1. Percentage of Toxin Removal as a Function of Time
3.3.2. Percentage of Adsorption Efficiency of Methylene Blue (MB) as a Function of Time
3.3.3. Effect of pH on the Adsorption MB
3.3.4. Comparative Adsorption Studies
3.3.5. Desorption Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motojima, M.; Nishijima, F.; Ikoma, M.; Kawamura, T.; Yoshioka, T.; Fogo, A.B.; Ichikawa, I. Role for “uremic toxin” in the progressive loss of intact nephrons in chronic renal failure. Kidney Int. 1991, 40, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Guel, M.; Ávila-Orta, C.; Cabello-Alvarado, C.; Cadenas-Pliego, G.; Esparza-González, S.; Pérez-Alvarez, M.; Quiñones-Jurado, Z. Non-Woven Fabrics Based on Nanocomposite Nylon 6/ZnO Obtained by Ultrasound-Assisted Extrusion for Improved Antimicrobial and Adsorption Methylene Blue Dye Properties. Polymers 2021, 13, 1888. [Google Scholar] [CrossRef] [PubMed]
- Chequer, F.M.D.; De Oliveira, G.A.R.; Ferraz, E.R.A.; Carvalho, J.; Zanoni, M.V.B.; De Oliveira, D.P. Textile Dyes: Dyeing Process and Environmental Impact. Eco-Friendly Text. Dye. Finish. 2013, 6, 151–176. [Google Scholar] [CrossRef] [Green Version]
- Kishor, R.; Bharagava, R.N.; Saxena, G. Industrial Wastewaters. In Recent Advances in Environmental Management; Informa: London, UK, 2018; pp. 1–25. [Google Scholar]
- Zhao, J.; Shi, Q.; Luan, S.; Song, L.; Yang, H.; Shi, H.; Jin, J.; Li, X.; Yin, J.; Stagnaro, P. Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. J. Membr. Sci. 2011, 369, 5–12. [Google Scholar] [CrossRef]
- Galiano, F.; Briceno, K.; Marino, T.; Molino, A.; Christensen, K.; Figoli, A. Advances in biopolymer-based membrane preparation and applications. J. Membr. Sci. 2018, 564, 562–586. [Google Scholar] [CrossRef]
- Dharupaneedi, S.P.; Nataraj, S.K.; Nadagouda, M.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 2019, 210, 850–866. [Google Scholar] [CrossRef]
- Zaarei, D.; Sarabi, A.A.; Sharif, F.; Kassiriha, S.M. Structure, properties and corrosion resistivity of polymeric nanocomposite coatings based on layered silicates. J. Coat. Technol. Res. 2008, 5, 241–249. [Google Scholar] [CrossRef]
- Singhvi, M.; Zendo, T.; Sonomoto, K. Free lactic acid production under acidic conditions by lactic acid bacteria strains: Challenges and future prospects. Appl. Microbiol. Biotechnol. 2018, 102, 5911–5924. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Zuo, F.; Yin, X.; Yu, J.; Ding, B. A Controlled Design of Ripple-Like Polyamide-6 Nanofiber/Nets Membrane for High-Efficiency Air Filter. Small 2017, 13, 1603151. [Google Scholar] [CrossRef]
- Mülhaupt, R. Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality. Macromol. Chem. Phys. 2013, 214, 159–174. [Google Scholar] [CrossRef]
- Gowthaman, N.; Lim, H.; Sreeraj, T.; Amalraj, A.; Gopi, S. Advantages of biopolymers biopolymers over synthetic polymers. In Biopolymers and their Industrial Applications; Elsevier BV: Amsterdam, The Netherlands, 2021; pp. 351–372. [Google Scholar]
- Mittal, V. Nanocomposites with Biodegradable Polymers. Nanocomposites Biodegrad. Polym. 2011, 68, 29–30. [Google Scholar] [CrossRef]
- Mohapi, M.; Sefadi, J.S.; Mochane, M.J.; Magagula, S.I.; Lebelo, K. Effect of LDHs and Other Clays on Polymer Composite in Adsorptive Removal of Contaminants: A Review. Crystals 2020, 10, 957. [Google Scholar] [CrossRef]
- Iturrondobeitia, M.; Okariz, A.; Guraya, T.; Zaldua, A.-M.; Ibarretxe, J. Influence of the processing parameters and composition on the thermal stability of PLA/nanoclay bio-nanocomposites. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Rhim, J.-W.; Hong, S.-I.; Ha, C.-S. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT 2009, 42, 612–617. [Google Scholar] [CrossRef]
- Iturrondobeitia, M.; Guraya, T.; Okariz, A.; Srot, V.; van Aken, P.A.; Ibarretxe, J.; Ellacuria, M.I. Quantitative electron tomography of PLA/clay nanocomposites to understand the effect of the clays in the thermal stability. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Iturrondobeitia, M.; Ibarretxe, J.; Okariz, A.; Jimbert, P.; Martinez, R.F.; Guraya, T. Semi-automated quantification of the microstructure of PLA/clay nanocomposites to improve the prediction of the elastic modulus. Polym. Test. 2018, 66, 280–291. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Xu, Y.X.; Hanna, M.A. Tapioca Starch-poly (lactic acid)-based Nanocomposite Foams as Affected by Type of Nanoclay. Int. Polym. Process. 2007, 22, 429–435. [Google Scholar] [CrossRef]
- Krishnamachari, P.; Zhang, J.; Lou, J.; Yan, J.; Uitenham, L. Biodegradable Poly(Lactic Acid)/Clay Nanocomposites by Melt Intercalation: A Study of Morphological, Thermal, and Mechanical Properties. Int. J. Polym. Anal. Charact. 2009, 14, 336–350. [Google Scholar] [CrossRef]
- Goettler, L.A.; Lee, K.Y.; Thakkar, H. Layered Silicate Reinforced Polymer Nanocomposites: Development and Applications. Polym. Rev. 2007, 47, 291–317. [Google Scholar] [CrossRef]
- Fukushima, K.; Tabuani, D.; Camino, G. Poly(lactic acid)/clay nanocomposites: Effect of nature and content of clay on morphology, thermal and thermo-mechanical properties. Mater. Sci. Eng. C 2012, 32, 1790–1795. [Google Scholar] [CrossRef]
- Wei, P.; Bocchini, S.; Camino, G. Nanocomposites combustion peculiarities. A case history: Polylactide-clays. Eur. Polym. J. 2013, 49, 932–939. [Google Scholar] [CrossRef]
- Djukić-Vuković, A.; Mladenović, D.; Ivanovic, J.; Pejin, J.; Mojović, L. Towards sustainability of lactic acid and poly-lactic acid polymers production. Renew. Sustain. Energy Rev. 2019, 108, 238–252. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, T.; Lin, W.; Tan, Y.; Chen, R.; Huang, Z.-X.; Yin, X.; Qu, J. Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Compos. Sci. Technol. 2017, 145, 157–164. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Li, H.; Lai, S.-Y.; Jow, J. Physical and chemical effects of ultrasound vibration on polymer melt in extrusion. Ultrason. Sonochem. 2010, 17, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Alvarado, C.J.; Quiñones-Jurado, Z.V.; Cruz-Delgado, V.J.; Avila-Orta, C.A. Pigmentation and Degradative Activity of TiO2 on Polyethylene Films Using Masterbatches Fabricated Using Variable-Frequency Ultrasound-Assisted Melt-Extrusion. Materials 2020, 13, 3855. [Google Scholar] [CrossRef]
- Cabello-Alvarado, C.; Andrade-Guel, M.; Ávila-Orta, C.A.; Gamero-Melo, P.; Reyes-Rodríguez, P.Y.; Quiñones-Jurado, Z.V.; Cadenas-Pliego, G.; Bartolo-Pérez, P.; Soriano-Corral, F.; Covarrubias-Gordillo, C. Composites based on nylon 6/clinoptilolite by ultrasound-assisted extrusion for enhanced flame retardant and mechanical properties. Polym. Bull. 2021, 1–17. [Google Scholar] [CrossRef]
- Andrade-Guel, M.; Ávila-Orta, C.A.; Cadenas-Pliego, G.; Cabello-Alvarado, C.J.; Pérez-Alvarez, M.; Reyes-Rodríguez, P.; Inam, F.; Cortés-Hernández, D.A.; Quiñones-Jurado, Z.V. Synthesis of Nylon 6/Modified Carbon Black Nanocomposites for Application in Uric Acid Adsorption. Materials 2020, 13, 5173. [Google Scholar] [CrossRef]
- Nofar, M. Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO2. Mater. Des. 2016, 101, 24–34. [Google Scholar] [CrossRef]
- Oksman, K.; Skrifvars, M.O.V.; Selin, J.-F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 2003, 63, 1317–1324. [Google Scholar] [CrossRef]
- Mazzanti, V.; Pariante, R.; Bonanno, A.; de Ballesteros, O.R.; Mollica, F.; Filippone, G. Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Compos. Sci. Technol. 2019, 180, 51–59. [Google Scholar] [CrossRef]
- Cabello-Alvarado, C.; Andrade-Guel, M.; Pérez-Alvarez, M.; Cadenas-Pliego, G.; Cortés-Hernández, D.A.; Bartolo-Pérez, P.; Ávila-Orta, C.; Cruz-Delgado, V.; Zepeda-Pedreguera, A. Graphene Nanoplatelets Modified with Amino-Groups by Ultrasonic Radiation of Variable Frequency for Potential Adsorption of Uremic Toxins. Nanomaterials 2019, 9, 1261. [Google Scholar] [CrossRef] [Green Version]
- Cervantes-Uc, J.M.; Cauich-Rodríguez, J.V.; Vázquez-Torres, H.; Garfias-Mesías, L.F.; Paul, D.R. Thermal degradation of commercially available organoclays studied by TGA–FTIR. Thermochim. Acta 2007, 457, 92–102. [Google Scholar] [CrossRef]
- Zhang, J.; Gupta, R.K.; Wilkie, C.A. Controlled silylation of montmorillonite and its polyethylene nanocomposites. Polymer 2006, 47, 4537–4543. [Google Scholar] [CrossRef]
- Ojijo, V.; Ray, S.S. Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay. Prog. Mater. Sci. 2014, 62, 1–57. [Google Scholar] [CrossRef]
- Dlamini, D.S.; Mishra, S.B.; Mishra, A.K.; Mamba, B.B. Ethylene Vinyl Acetate and Polycaprolactone–Organoclay Nanocomposite: Thermal, Mechanical and Morphological Properties. J. Inorg. Organomet. Polym. Mater. 2011, 21, 229–236. [Google Scholar] [CrossRef]
- Naderi-Samani, H.; Razavi, R.S.; Loghman-Estarki, M.R.; Ramazani, M. The effects of organoclay on the morphology and mechanical properties of PAI/clay nanocomposites coatings prepared by the ultrasonication assisted process. Ultrason. Sonochem. 2017, 38, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yu, H.; Wu, S.; Ji, G.; Shen, J. Study on the structure and properties of EVA/clay nanocomposites. J. Mater. Sci. 2004, 39, 4301–4303. [Google Scholar] [CrossRef]
- Dimitry, O.I.H.; Abdeen, Z.; Ismail, E.A.; Saad, A.L.G. Studies of Particle Dispersion in Elastomeric Polyurethane/Organically Modified Montmorillonite Nanocomposites. Int. J. Green Nanotechnol. 2011, 3, 197–212. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.; Su, Y.; Kun, E.; Zhang, F. Clay-Polymer Nanocomposites Prepared by Reactive Melt Extrusion for Sustained Drug Release. Pharmaceutics 2020, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Dimitry, O.I.H.; Mansour, N.A.; Saad, A.L.G. Influence of organic modifier loading on particle dispersion of biode-gradable polycaprolactone/montmorillonite nanocomposites. Int. J. Chem. Molec. Eng. 2016, 10, 283–297. [Google Scholar]
- Edith, D.; Six, J.-L. Surface characteristics of PLA and PLGA films. Appl. Surf. Sci. 2006, 253, 2758–2764. [Google Scholar] [CrossRef]
- Cuiffo, M.A.; Snyder, J.; Elliott, A.M.; Romero, N.; Kannan, S.; Halada, G.P. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Appl. Sci. 2017, 7, 579. [Google Scholar] [CrossRef] [Green Version]
- Zawrah, M.; Khattab, R.; Saad, E.; Gado, R. Effect of surfactant types and their concentration on the structural characteristics of nanoclay. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 122, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Orta, C.A.; Colunga, J.G.M.; Baquéz, D.B.; López, C.E.R.; Delgado, V.J.C.; Morones, P.G.; González, J.A.R. Continuous process assisted by ultrasound of variable frequency and amplitude for the preparation of nanocomposites based on polymers and nanoparticles. U.S. Patent Application No. 13/258,930, 26 April 2012. [Google Scholar]
- Brizzolara, D.; Cantow, H.-J.; Diederichs, K.; Keller, E.; Domb, A.J. Mechanism of the Stereocomplex Formation between Enantiomeric Poly(lactide)s. Macromology 1996, 29, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Miyata, T.; Masuko, T. Morphology of poly(l-lactide) solution-grown crystals. Polymer 1997, 38, 4003–4009. [Google Scholar] [CrossRef]
- Saeidlou, S.; Huneault, M.A.; Li, H.; Sammut, P.; Park, C.B. Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes. Polymer 2012, 53, 5816–5824. [Google Scholar] [CrossRef]
- As’Habi, L.; Jafari, S.H.; Khonakdar, H.A.; Häussler, L.; Wagenknecht, U.; Heinrich, G. Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: Synergistic role of LLDPE and clay. Thermochim. Acta 2013, 565, 102–113. [Google Scholar] [CrossRef]
- Li, D.; Frey, M.W.; Vynias, D.; Baeumner, A.J. Availability of biotin incorporated in electrospun PLA fibers for streptavidin binding. Polymer 2007, 48, 6340–6347. [Google Scholar] [CrossRef]
- Darie, R.N.; Pâslaru, E.; Sdrobis, A.; Pricope, G.M.; Hitruc, G.E.; Poiată, A.; Baklavaridis, A.; Vasile, C. Effect of Nanoclay Hydrophilicity on the Poly(lactic acid)/Clay Nanocomposites Properties. Ind. Eng. Chem. Res. 2014, 53, 7877–7890. [Google Scholar] [CrossRef]
- Mohapatra, A.K.; Mohanty, S.; Nayak, S.K. Study of Thermo-Mechanical and Morphological Behaviour of Biodegradable PLA/PBAT/Layered Silicate Blend Nanocomposites. J. Polym. Environ. 2014, 22, 398–408. [Google Scholar] [CrossRef]
- Mihai, M.; Ton-That, M.-T. Novel bio-nanocomposite hybrids made from polylactide/nanoclay nanocomposites and short flax fibers. J. Thermoplast. Compos. Mater. 2019, 32, 3–28. [Google Scholar] [CrossRef]
- Zaidi, L.; Kaci, M.; Bruzaud, S.; Bourmaud, A.; Grohens, Y. Effect of natural weather on the structure and properties of polylactide/Cloisite 30B nanocomposites. Polym. Degrad. Stab. 2010, 95, 1751–1758. [Google Scholar] [CrossRef]
- Andrade-Guel, M.; Cabello-Alvarado, C.; Cruz-Delgado, V.J.; Bartolo-Perez, P.; De León-Martínez, P.A.; Sáenz-Galindo, A.; Cadenas-Pliego, G.; Ávila-Orta, C.A. Surface Modification of Graphene Nanoplatelets by Organic Acids and Ultrasonic Radiation for Enhance Uremic Toxins Adsorption. Materials 2019, 12, 715. [Google Scholar] [CrossRef] [Green Version]
- Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and biocompatible polymers for tissue engineering application: A review. Artif. Cells Nanomed. Biotechnol. 2016, 45, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Martinez, V.; Ramirez-Vargas, E.; Medellin-Rodriguez, F.; Ávila-Orta, C.; Gallardo-Vega, C.; Salcedo, A.J.; Andrade-Guel, M. Zeolite 13X modification with gamma-aminobutyric acid (GABA). Microporous Mesoporous Mater. 2020, 295, 109941. [Google Scholar] [CrossRef]
- Reyes-Rodríguez, P.; Ávila-Orta, C.; Andrade-Guel, M.; Cortés-Hernández, D.; Herrera-Guerrero, A.; Cabello-Alvarado, C.; Sánchez-Fuentes, J.; Ramos-Martínez, V.; Valdez-Garza, J.; Hurtado-López, G. Synthesis and characterization of magnetic nanoparticles Zn1−xMgxFe2O4 with partial substitution of Mg2+ (x = 0.0, 0.25, 0.5, 0.75 and 1.0) for adsorption of uremic toxins. Ceram. Int. 2020, 46, 27913–27921. [Google Scholar] [CrossRef]
- Mascarenhas, B.C.; Tavares, F.A.; Paris, E.C. Functionalized faujasite zeolite immobilized on poly(lactic acid) composite fibers to remove dyes from aqueous media. J. Appl. Polym. Sci. 2020, 137, 48561. [Google Scholar] [CrossRef]
- Vanaamudan, A.; Sudhakar, P.P. Equilibrium, kinetics and thermodynamic study on adsorption of reactive blue-21 and reactive red-141 by chitosan-organically modified nanoclay (Cloisite 30B) nano-bio composite. J. Taiwan Inst. Chem. Eng. 2015, 55, 145–151. [Google Scholar] [CrossRef]
- Senthilkumaar, S.; Varadarajan, P.; Porkodi, K.; Subbhuraam, C. Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. J. Colloid Interface Sci. 2005, 284, 78–82. [Google Scholar] [CrossRef]
- Ramakrishna, K.R.; Viraraghavan, T. Use of slag for dye removal. Waste Manag. 1998, 17, 483–488. [Google Scholar] [CrossRef]
- Mouni, L.; Belkhiri, L.; Bollinger, J.-C.; Bouzaza, A.; Assadi, A.; Tiri, A.; Dahmoune, F.; Madani, K.; Remini, H. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 2018, 153, 38–45. [Google Scholar] [CrossRef]
- Li, Y.; Du, Q.; Liu, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 2013, 91, 361–368. [Google Scholar] [CrossRef]
- Marahel, F.; Ghaedi, M.; Ansari, A. Zinc Oxide Nanoparticles Loaded on Activated Carbon and Its Application for Adsorption Removal of Uric Acid. Synth. React. Inorg. Met. Chem. 2015, 45, 1387–1395. [Google Scholar] [CrossRef]
- Ho, C.S.; Abidin, N.H.Z.; Nugraha, M.W.; Sambudi, N.S.; Ali, F.; Wirzal, M.D.H.; Kasmiarno, L.D.; Adli, S.A. Electrospun Porous Polylactic Acid Fibers Containing CdS for Degradation of Methylene Blue. Fibers Polym. 2020, 21, 1212–1221. [Google Scholar] [CrossRef]
- Saputra, O.A.; Pujiasih, S.; Rizki, V.N.; Nurhayati, B.; Pramono, E.; Purnawan, C. Silylated-montmorillonite as co-adsorbent of chitosan composites for methylene blue dye removal in aqueous solution. Commun. Sci. Technol. 2020, 5, 45–52. [Google Scholar] [CrossRef]
Sample | Time of Sonication (min) | Amine Employed |
---|---|---|
C20A | 0 | None |
C20AM 15 | 15 | 1,4–DHCDB |
C20AM 30 | 30 | 1,4–DHCDB |
C20AM 45 | 45 | 1,4–DHCDB |
C20AM 60 | 60 | 1,4–DHCDB |
C20AM 120 | 120 | 1,4–DHCDB |
Sample Identification | Weight Percent of Additive (%) | Nanoarcilla C20A (g) | PLA Content (g) | Total Weight (g) |
---|---|---|---|---|
PLA | 0 | 0 | 200 | 200 |
PLA/C20AM 0.5% US | 0.5 | 1 | 199 | 200 |
PLA/C20AM 1% US | 1 | 2 | 198 | 200 |
PLA/C20AM 5% US | 5 | 10 | 190 | 200 |
Sample | T5% (°C) | T25% (°C) |
---|---|---|
C20A | 264.0 | 367.4 |
C20AM 15 | 230.9 | 355.9 |
C20AM 30 | 227.6 | 348.9 |
C20AM 45 | 226.9 | 339.3 |
C20AM 60 | 226.0 | 326.6 |
C20AM 120 | 226.5 | 307.4 |
Sample | C1s Peak (eV) | O1s Peak (eV) | Si2p Peak (eV) | C1s At% | O1s At% | Si2p At% |
---|---|---|---|---|---|---|
PLA | 284.73 | 533.16 | ND | 87.32 | 12.68 | ND |
PLA/C20AM 0.5% US | 284.79 | 533.24 | 102.15 | 81.86 | 17.54 | 0.6 |
PLA/C20AM 1% US | 284.74 | 533.06 | 102.17 | 80.82 | 17.67 | 1.51 |
PLA/C20AM 5% US | 284.75 | 532.94 | 102.19 | 78.87 | 16.46 | 4.67 |
Sample | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
k | qmax | R2 | n | KF | R2 | |
Urea | ||||||
C20A | 0.11 | 1.17 | 0.9137 | 0.25 | 0.58 | 0.7834 |
C20AM | 0.10 | 0.73 | 0.9558 | 0.32 | 0.58 | 0.7514 |
PLAC20AM 5% | 0.41 | 11.94 | 0.7444 | 0.09 | 1.8 | 0.9049 |
Uric acid | ||||||
C20A | 0.44 | 22.82 | 0.8616 | 0.21 | 0.78 | 0.7100 |
C20AM | 0.58 | 68.97 | 0.9991 | 0.05 | 1.41 | 0.9976 |
PLAC20AM 5% | 0.12 | 44.78 | 0.9941 | 0.69 | 9.86 | 0.9185 |
Creatinine | ||||||
C20A | 0.28 | 7.09 | 0.8652 | 0.99 | 6.06 | 0.8890 |
C20AM | 0.20 | 412 | 0.9377 | 1.17 | 6.48 | 0.8656 |
PLAC20AM 5% | 0.25 | 634 | 0.9721 | 1.06 | 6.56 | 0.9609 |
Methylene Blue | ||||||
---|---|---|---|---|---|---|
Sample | Langmuir | Freundlich | ||||
k | qmax | R2 | n | KF | R2 | |
C20A | 0.04 | 266 | 0.976 | 1.10 | 8.98 | 0.9728 |
C20AM | 0.015 | 788 | 0.9973 | 0.20 | 5.11 | 0.9736 |
PLAC20AM 5% | 0.03 | 367 | 0.9864 | 0.16 | 4.91 | 0.7232 |
Material | Uremic Toxins (Adsorption, %) | Dyes (Adsorption, %) | |||
---|---|---|---|---|---|
Uric Acid | Creatinine | Urea | Methylene Blue | References | |
ZnFe2O4 | 21 | 77 | 84 | [59] | |
Zn0·5 Mg0·5 Fe2O4 | 20 | 77 | 85 | [59] | |
Zno/Activated carbon | 90 | [66] | |||
MCB/Nylon 6 | 78–82 | [29] | |||
ZnO/Nylon 6 | 93 | [2] | |||
CdS/PLA | 90 | [67] | |||
Chitosan/sMMt | ~94 | [68] | |||
C20A | 27 | 78 | 74 | 55 | Present study |
C20AM | 56 | 85 | 77 | 91 | Present study |
PLAC20AM 5% | 70 | 89 | 65 | 97 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Guel, M.; Cabello-Alvarado, C.; Romero-Huitzil, R.L.; Rodríguez-Fernández, O.S.; Ávila-Orta, C.A.; Cadenas-Pliego, G.; Medellín-Banda, D.I.; Gallardo-Vega, C.; Cepeda-Garza, J. Nanocomposite PLA/C20A Nanoclay by Ultrasound-Assisted Melt Extrusion for Adsorption of Uremic Toxins and Methylene Blue Dye. Nanomaterials 2021, 11, 2477. https://doi.org/10.3390/nano11102477
Andrade-Guel M, Cabello-Alvarado C, Romero-Huitzil RL, Rodríguez-Fernández OS, Ávila-Orta CA, Cadenas-Pliego G, Medellín-Banda DI, Gallardo-Vega C, Cepeda-Garza J. Nanocomposite PLA/C20A Nanoclay by Ultrasound-Assisted Melt Extrusion for Adsorption of Uremic Toxins and Methylene Blue Dye. Nanomaterials. 2021; 11(10):2477. https://doi.org/10.3390/nano11102477
Chicago/Turabian StyleAndrade-Guel, M., C. Cabello-Alvarado, R. L. Romero-Huitzil, O. S. Rodríguez-Fernández, C. A. Ávila-Orta, G. Cadenas-Pliego, D. I. Medellín-Banda, C. Gallardo-Vega, and J. Cepeda-Garza. 2021. "Nanocomposite PLA/C20A Nanoclay by Ultrasound-Assisted Melt Extrusion for Adsorption of Uremic Toxins and Methylene Blue Dye" Nanomaterials 11, no. 10: 2477. https://doi.org/10.3390/nano11102477
APA StyleAndrade-Guel, M., Cabello-Alvarado, C., Romero-Huitzil, R. L., Rodríguez-Fernández, O. S., Ávila-Orta, C. A., Cadenas-Pliego, G., Medellín-Banda, D. I., Gallardo-Vega, C., & Cepeda-Garza, J. (2021). Nanocomposite PLA/C20A Nanoclay by Ultrasound-Assisted Melt Extrusion for Adsorption of Uremic Toxins and Methylene Blue Dye. Nanomaterials, 11(10), 2477. https://doi.org/10.3390/nano11102477