Facile Fabrication of Three-Dimensional Fusiform-Like α-Fe2O3 for Enhanced Photocatalytic Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of α-Fe2O3 Nanorods
2.2. Characterization
2.3. Photocatalytic Experiments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdulkadir, I.; Abdallah, H.M.I.; Jonnalagadda, S.B.; Martincigh, B.S. The effect of synthesis method on the structure, and magnetic and photocatalytic properties of hematite (alpha-Fe2O3) Nanoparticles. S. Afr. J. Chem. 2018, 71, 68–78. [Google Scholar] [CrossRef]
- Dai, Y.; Li, C.; Shen, Y.; Zhu, S.; Hvid, M.S.; Wu, L.C.; Skibsted, J.; Li, Y.; Niemantsverdriet, J.H.; Besenbacher, F.; et al. Efficient solar-driven hydrogen transfer by bismuth-based photocatalyst with engineered basic sites. J. Am. Chem. Soc. 2018, 140, 16711–16719. [Google Scholar] [CrossRef]
- Li, Y.; Xu, G.; Zhu, X.; Man, Z.; Fu, X.; Hao, Z.; Cui, Y.; Yuan, C.; Zhang, W.; Yan, S.; et al. A hierarchical dual-phase photoetching template route to assembling functional layers on Si photoanode with tunable nanostructures for efficient water splitting. Appl. Catal. B 2019, 259, 118115. [Google Scholar] [CrossRef]
- Zheng, X.G.; Fu, W.D.; Kang, F.Y.; Peng, H.; Wen, J. Enhanced photo-Fenton degradation of tetracycline using TiO2-coated alpha-Fe2O3 core-shell heterojunction. J. Ind. Eng. Chem. 2018, 68, 14–23. [Google Scholar] [CrossRef]
- Wheeler, D.A.; Wang, G.; Ling, Y.; Li, Y.; Zhang, J.Z. Nanostructured hematite: Synthesis, characterization, chargecarrier dynamics, and photoelectro chemical properties. Energy Environ. Sci. 2012, 5, 6682–6702. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Q.F.; Wei, M.Z.; Wang, C.Q. Synthesis of one-dimensional alpha-Fe2O3/Bi2MoO6 heterostructures by electrospinning process with enhanced photocatalytic activity. J. Alloys Compd. 2015, 646, 417–424. [Google Scholar] [CrossRef]
- Talande, S.V.; Bakandritsos, A.; Jakubec, P.; Malina, O.; Zboril, R.; Tucek, J. Densely functionalized cyano graphene bypasses electrolyte and synthesis restrictions, and transitions to a seamless graphene/β-FeOOH hybrid for supercapacitors. Adv. Funct. Mater. 2019, 29, 51. [Google Scholar] [CrossRef]
- Park, G.; Kim, Y.; Kim, Y.H.; Park, M.; Jang, K.Y.; Song, H.; Nam, K.M. Preparation and phase transition of FeOOH nanorods: Strain effects on catalytic water oxidation. Nanoscale 2017, 9, 4751–4758. [Google Scholar] [CrossRef]
- Achouri, F.; Corbel, S.; Aboulaich, A.; Balan, L.; Ghrabi, A.; Said, M.B.; Schneider, R. Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J. Phys. Chem. Solids 2014, 75, 1081–1087. [Google Scholar] [CrossRef]
- Jia, X.H.; Yu, X.J.; Xia, L.X.; Sun, Y.L.; Song, H.J. Synthesis and characterization of Ag/alpha-Fe2O3 microspheres and their application to highly sensitive and selective detection of ethanol. Appl. Surf. Sci. 2018, 462, 29–37. [Google Scholar] [CrossRef]
- Moniz, S.J.A.; Shevlin, S.A.; An, X.Q.; Guo, Z.X.; Tang, J.W. Fe2O3–TiO2 Nanocomposites for Enhanced Charge Separation and Photocatalytic Activity. Chem. Eur. J. 2014, 20, 15571–15579. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, C.; Wang, H.; Liu, Z.; Hao, Z. Facilely synthesized Fe2O3-graphene nano composite as novel electrode materials for super capacitors with high performance. J. Alloys Compd. 2013, 552, 486–491. [Google Scholar] [CrossRef]
- Ma, H.; Mahadik, M.A.; Park, J.W.; Kumar, M.; Chung, H.S.; Chae, W.S.; Kong, G.W.; Lee, H.H.; Choi, S.H.; Jang, J.S. Highly self-diffused Sn doping in -Fe2O3 nanorod photoanodes initiated from -FeOOH nanorod/FTO by hydrogen treatment for solar water oxidation. Nanoscale 2018, 10, 22560–22571. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Lin, Y.; Chou, L.Y.; Sheehan, S.W.; He, W.; Zhang, F.; Hou, H.J.; Wang, D. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew. Chem. Int. Ed. 2011, 50, 499–502. [Google Scholar] [CrossRef]
- Yang, Q.; Du, J.Y.; Li, J.; Wu, Y.T.; Zhou, Y.; Yang, Y.; Yang, D.M.; He, H.C. Thermodynamic and kinetic influence of oxygen vacancies on the solar water oxidation reaction of α-Fe2O3 photoanodes. ACS Appl. Mater. Interfaces 2020, 12, 11625–11634. [Google Scholar] [CrossRef]
- Malviya, K.D.; Klotz, D.; Dotan, H.; Shlenkevich, D.; Tsyganok, A.; Mor, H.; Rothschild, A. Influence of Ti doping levels on the photoelectrochemical properties of thin-film hematite (α-Fe2O3) photoanodes. J. Phys. Chem. C 2017, 121, 4206–4213. [Google Scholar] [CrossRef]
- Kaur, H.; Kainth, M.; Meena, S.S.; Kang, T.S. Sustainable preparation of sunlight active alpha-Fe2O3 nanoparticles using iron containing ionic liquids for photocatalytic applications. RSC Adv. 2019, 9, 41803–41810. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Li, Q.; Cao, C.; Huang, J.; Li, S.; Zhang, S.; Chen, Z.; Zhang, K.; Al-Deyab, S.S.; Lai, Y. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2017, 4, 1600152. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, T.; Liu, Z.; Wang, D.; Wang, L.; Xie, T. Highly photoactive Ti-doped α-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim. Acta 2014, 129, 358–363. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.J.; Wen, F. Hydrogen production by the redox of iron oxide prepared by hydrothermal synthesis. Int. J. Hydrogen Energy 2012, 37, 977–983. [Google Scholar] [CrossRef]
- Manukyan, K.V.; Chen, Y.S.; Rouvimov, S.; Li, P.; Li, X.; Dong, S.; Liu, X.; Furdyna, J.K.; Orlov, A.; Bernstein, G.H.; et al. Ultra small α-Fe2O3 super paramagnetic nanoparticles with high magnetization prepared by template-assisted combustion process. J. Phys. Chem. C 2014, 118, 16264–16271. [Google Scholar] [CrossRef]
- Monalisa, P.; Rupali, R.; Kalyan, M. Facile functionalization of Fe2O3 nanoparticles to induce inherent photolumin escence and excellent photocatalytic activity. Appl. Phys. Lett. 2014, 104, 233110. [Google Scholar]
- Lin, M.; Tng, L.L.; Lim, T.Y.; Choo, M.L.; Bai, S.Q. Hydrothermal synthesis of octadecahedral hematite (α-Fe2O3) nanoparticles: An epitaxial growth from goethite (α-FeOOH). J. Phys. Chem. C 2014, 118, 10903–10910. [Google Scholar] [CrossRef]
- Lin, Y.M.; Abel, P.R.; Heller, A.; Mullins, C.B. α-Fe2O3 nanorods as anode material forlithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2885–2891. [Google Scholar] [CrossRef]
- Sarkar, D.; Mandal, M.; Mandal, K. Design and synthesis of high performance multifunctional ultra thin hematite nanoribbons. ACS Appl. Mater. Interfaces 2013, 5, 11995–12004. [Google Scholar] [CrossRef]
- Han, S.C.; Hu, L.F.; Liang, Z.Q.; Wageh, S.; Al-Ghamdi, A.A.; Chen, Y.S.; Fang, X.S. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 2014, 24, 5719–5727. [Google Scholar] [CrossRef]
- Liu, S.X.; Zheng, L.X.; Yu, P.P.; Han, S.C.; Fang, X.S. Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances. Adv. Funct. Mater. 2016, 19, 3331–3339. [Google Scholar] [CrossRef]
- Liu, X.J.; Wang, H.; Su, C.H.; Zhang, P.W.; Bai, J.B. Controlled fabrication and characterization of microspherical FeCO3 and α-Fe2O3. J. Colloid Interface Sci. 2010, 351, 427–432. [Google Scholar] [CrossRef]
- Huang, J.R.; Yang, M.; Gu, C.P.; Zhai, M.H.; Sun, Y.F.; Liu, J.H. Hematite solid and hollow spindles: Selective synthesis and application in gas sensor and photocatalysis. Mater. Res. Bull. 2011, 46, 1211–1218. [Google Scholar] [CrossRef]
- Kwon, K.A.; Lim, H.S.; Sun, Y.K.; Suh, K.D. α-Fe2O3 submicron spheres with hollow and macroporous structures as high-performance anode materials for lithium ion batteries. J. Phys. Chem. C 2014, 118, 2897–2907. [Google Scholar] [CrossRef]
- Chen, L.Q.; Yang, X.F.; Chen, J.; Liu, J.; Wu, H.; Zhan, H.Q.; Liang, C.L.; Wu, M.M. Continuous shape-and spectroscopy-tuning of hematite nanocrystals. Inorg. Chem. 2010, 49, 8411–8420. [Google Scholar] [CrossRef]
- Cha, H.G.; Kim, S.J.; Lee, K.J.; Jung, M.H.; Kang, Y.S. Single-crystalline porous hematite nanorods: Photocatalytic and magnetic properties. J. Phys. Chem. C 2011, 115, 19129–19135. [Google Scholar] [CrossRef]
- Hao, H.; Sun, D.; Xu, Y.; Liu, P.; Zhang, G.; Sun, Y.; Gao, D. Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic properties. J. Colloid. Interface Sci. 2016, 462, 315–324. [Google Scholar] [CrossRef]
- Chen, Y.H.; Lin, C.C. Effect of nano-hematite morphology on photocatalytic activity. Phys. Chem. Miner. 2014, 41, 727–736. [Google Scholar] [CrossRef]
- Liu, X.H.; Qiu, G.Z.; Yan, A.G.; Wang, Z.; Li, X.G. Hydrothermal synthesis and characterization of α-FeOOH and α-Fe2O3 uniform nanocrystallines. J. Alloys Compd. 2007, 433, 216–220. [Google Scholar] [CrossRef]
- Jung, J.; Song, K.; Bae, D.R.; Lee, S.W.; Lee, G.H.; Kang, Y.M. β-FeOOH nanorod bundles with highly enhanced round-trip efficiency and extremely low over potential for lithium-air batteries. Nanoscale 2013, 5, 11845–11849. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y.; Song, T.; Li, J.P.; Yang, P. Anion and solvent derived morphology controlling and properties of beta-FeOOH and alpha-Fe2O3. J. Nanosci. Nanotechnol. 2019, 19, 8036–8044. [Google Scholar] [CrossRef]
- Jiang, T.C.; Bu, F.X.; Feng, X.X.; Shakir, I.; Hao, G.L.; Xu, Y.X. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 2017, 11, 5140–5147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.F.; Qi, L.J.; Zhu, X.S.; Yan, X.H.; Jia, Y.F.; Xu, L.; Sun, D.M.; Tang, Y.M. Proline-derived in situ synthesis of nitrogen-doped porous carbon nanosheets with encaged Fe2O3@Fe3C nanoparticles for lithium-ion battery anodes. Nano Res. 2017, 10, 3164–3177. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.H.; Li, L.; Ge, Y.L.; Li, B.J.; Zhang, Y.J.; Shang, Y.Y.; Cao, A.Y. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications. Nanotechnology 2017, 28, 34570. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Liu, H.; Pang, S.; Yan, P.; Liu, M.; Ding, M.; Zhang, B. Facile Fabrication of Three-Dimensional Fusiform-Like α-Fe2O3 for Enhanced Photocatalytic Performance. Nanomaterials 2021, 11, 2650. https://doi.org/10.3390/nano11102650
Li M, Liu H, Pang S, Yan P, Liu M, Ding M, Zhang B. Facile Fabrication of Three-Dimensional Fusiform-Like α-Fe2O3 for Enhanced Photocatalytic Performance. Nanomaterials. 2021; 11(10):2650. https://doi.org/10.3390/nano11102650
Chicago/Turabian StyleLi, Moyan, Hongjin Liu, Shaozhi Pang, Pengwei Yan, Mingyang Liu, Minghui Ding, and Bin Zhang. 2021. "Facile Fabrication of Three-Dimensional Fusiform-Like α-Fe2O3 for Enhanced Photocatalytic Performance" Nanomaterials 11, no. 10: 2650. https://doi.org/10.3390/nano11102650
APA StyleLi, M., Liu, H., Pang, S., Yan, P., Liu, M., Ding, M., & Zhang, B. (2021). Facile Fabrication of Three-Dimensional Fusiform-Like α-Fe2O3 for Enhanced Photocatalytic Performance. Nanomaterials, 11(10), 2650. https://doi.org/10.3390/nano11102650