Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields
Abstract
:1. Introduction
2. SSBCD Device Working Principle
3. Heterodyne and Homodyne Schemes
4. Results and Discussion
4.1. THz Electric Field Scaling
4.2. Differential Homodyne Scheme
4.3. Absolute THz Pulse Polarity Recovery
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Han, P.Y.; Zhang, X.C. Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol. 2001, 12, 1747–1756. [Google Scholar] [CrossRef]
- D’angelo, F.; Mics, Z.; Bonn, M.; Turchinovich, D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Phys. Lett 1996, 68, 2924–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreeva, V.A.; Kosareva, O.G.; Panov, N.A.; Shipilo, D.E.; Solyankin, P.M.; Esaulkov, M.N.; González De Alaiza Martínez, P.; Shkurinov, A.P.; Makarov, V.A.; Bergé, L.; et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys. Rev. Lett. 2016, 116. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.I.; Yoo, Y.J.; You, Y.S.; Kim, K.Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Appl. Phys. Lett. 2014, 105, 041103. [Google Scholar] [CrossRef]
- Kim, K.Y.; Taylor, A.J.; Glownia, J.H.; Rodriguez, G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nat. Photonics 2008, 2, 605–609. [Google Scholar] [CrossRef]
- Seifert, T.; Jaiswal, S.; Martens, U.; Hannegan, J.; Braun, L.; Maldonado, P.; Freimuth, F.; Kronenberg, A.; Henrizi, J.; Radu, I.; et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 2016, 10, 483–488. [Google Scholar] [CrossRef]
- Chen, S.C.; Feng, Z.; Li, J.; Tan, W.; Du, L.H.; Cai, J.; Ma, Y.; He, K.; Ding, H.; Zhai, Z.H.; et al. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl. 2020, 9. [Google Scholar] [CrossRef]
- Seifert, T.; Jaiswal, S.; Sajadi, M.; Jakob, G.; Winnerl, S.; Wolf, M.; Kläui, M.; Kampfrath, T. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm-1 from a metallic spintronic emitter. Appl. Phys. Lett. 2017, 110, 252402. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, J.; Jinno, H.; Ichino, S.; Suizu, K.; Yamashita, M.; Ouchi, T.; Kasai, S.; Ohtake, H.; Uchida, H.; Nishizawa, N.; et al. High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser. Opt. Express 2009, 17, 7533. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, M.; Zhang, X.-C. Dielectric constant measurement of thin films by differential time-domain spectroscopy. Appl. Phys. Lett. 2000, 76, 3221. [Google Scholar] [CrossRef] [Green Version]
- Vieweg, N.; Fischer, B.M.; Reuter, M.; Kula, P.; Dabrowski, R.; Celik, M.A.; Frenking, G.; Koch, M.; Jepsen, P.U. Ultrabroadband terahertz spectroscopy of a liquid crystal. Opt. Express 2012, 20, 28249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpowicz, N.; Dai, J.; Lu, X.; Chen, Y.; Yamaguchi, M.; Zhao, H.; Zhang, X.-C.C.; Zhang, L.; Zhang, C.; Price-Gallagher, M.; et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Appl. Phys. Lett. 2008, 92, 011131. [Google Scholar] [CrossRef]
- Zalkovskij, M.; Zoffmann Bisgaard, C.; Novitsky, A.; Malureanu, R.; Savastru, D.; Popescu, A.; Uhd Jepsen, P.; Lavrinenko, A.V. Ultrabroadband terahertz spectroscopy of chalcogenide glasses. Appl. Phys. Lett. 2012, 100, 031901. [Google Scholar] [CrossRef] [Green Version]
- Kaltenecker, K.J.; Engelbrecht, S.; Iwaszczuk, K.; Fischer, B.M.; Jepsen, P.U. Ultrabroadband THz time-domain spectroscopy of biomolecular crystals. In Proceedings of the IEEE International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Hirori, H.; Doi, A.; Blanchard, F.; Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Appl. Phys. Lett. 2011, 98, 091106. [Google Scholar] [CrossRef]
- Oh, T.I.; You, Y.S.; Jhajj, N.; Rosenthal, E.W.; Milchberg, H.M.; Kim, K.Y. Intense terahertz generation in two-color laser filamentation: Energy scaling with terawatt laser systems. New J. Phys. 2013, 15, 075002. [Google Scholar] [CrossRef]
- Koulouklidis, A.D.; Gollner, C.; Shumakova, V.; Fedorov, V.Y.; Pugžlys, A.; Baltuška, A.; Tzortzakis, S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Hwang, H.Y.; Tao, H.; Strikwerda, A.C.; Fan, K.; Keiser, G.R.; Sternbach, A.J.; West, K.G.; Kittiwatanakul, S.; Lu, J.; et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487. [Google Scholar] [CrossRef]
- Savoini, M.; Grübel, S.; Bagiante, S.; Sigg, H.; Feurer, T.; Beaud, P.; Johnson, S.L. THz near-field enhancement by means of isolated dipolar antennas: The effect of finite sample size. Opt. Express 2016, 24, 4552. [Google Scholar] [CrossRef]
- Shalaby, M.; Merbold, H.; Peccianti, M.; Razzari, L.; Sharma, G.; Ozaki, T.; Morandotti, R.; Feurer, T.; Weber, A.; Heyderman, L.; et al. Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays. Appl. Phys. Lett. 2011, 99, 041110. [Google Scholar] [CrossRef]
- Bowlan, P.; Martinez-Moreno, E.; Reimann, K.; Elsaesser, T.; Woerner, M. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 041408. [Google Scholar] [CrossRef]
- Lin, S.; Yu, S.; Talbayev, D. Measurement of Quadratic Terahertz Optical Nonlinearities Using Second-Harmonic Lock-in Detection. Phys. Rev. Appl. 2018, 10, 044007. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-C.; Xu, J. Terahertz Radiation. In Introduction to THz Wave Photonics; Springer: Boston, MA, USA, 2010; pp. 1–26. [Google Scholar]
- Dai, J.; Xie, X.; Zhang, X.C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 2006, 97, 103903. [Google Scholar] [CrossRef]
- Lu, X.; Karpowicz, N.; Zhang, X.-C. Broadband terahertz detection with selected gases. J. Opt. Soc. Am. B 2009, 26, A66. [Google Scholar] [CrossRef]
- He, H.; Zhang, X.-C. Analysis of Gouy phase shift for optimizing terahertz air-biased-coherent- detection. Appl. Phys. Lett. Addit. Inf. Appl. Phys. Lett. J. Homepage 2012, 100. [Google Scholar] [CrossRef]
- Li, C.-Y.; Seletskiy, D.V.; Yang, Z.; Sheik-Bahae, M. Broadband field-resolved terahertz detection via laser induced air plasma with controlled optical bias. Opt. Express 2015, 23, 11436. [Google Scholar] [CrossRef] [PubMed]
- Tomasino, A.; Mazhorova, A.; Clerici, M.; Peccianti, M.; Ho, S.-P.; Jestin, Y.; Pasquazi, A.; Markov, A.; Jin, X.; Piccoli, R.; et al. Solid-state-biased coherent detection of ultra-broadband terahertz pulses. Optica 2017, 4, 1358. [Google Scholar] [CrossRef]
- Tomasino, A.; Piccoli, R.; Jestin, Y.; Delprat, S.; Chaker, M.; Peccianti, M.; Clerici, M.; Busacca, A.; Razzari, L.; Morandotti, R. Invited Article: Ultra-broadband terahertz coherent detection via a silicon nitride-based deep sub-wavelength metallic slit. APL Photonics 2018, 3, 110805. [Google Scholar] [CrossRef] [Green Version]
- Nahata, A.; Heinz, T.F. Detection of freely propagating terahertz radiation by use of optical second-harmonic generation. Opt. Lett. 1998, 23, 67. [Google Scholar] [CrossRef]
- Nahata, A.; Heinz, T.F.; Misewich, J.A. High-speed electrical sampling using optical second-harmonic generation. Appl. Phys. Lett. 1996, 69, 746–748. [Google Scholar] [CrossRef] [Green Version]
- Bartel, T.; Gaal, P.; Reimann, K.; Woerner, M.; Elsaesser, T. Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett. 2005, 30, 2805. [Google Scholar] [CrossRef] [PubMed]
- Naftaly, M.; Dudley, R. Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Opt. Lett. 2009, 34, 1213. [Google Scholar] [CrossRef] [PubMed]
- Kawada, Y.; Yasuda, T.; Takahashi, H. Carrier envelope phase shifter for broadband terahertz pulses. Opt. Lett. 2016, 41, 986. [Google Scholar] [CrossRef] [PubMed]
- Brabec, T.; Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 2000, 72, 545–591. [Google Scholar] [CrossRef]
- Cicėnas, P.; Geižutis, A.; Malevich, V.L.; Krotkus, A. Terahertz radiation from an InAs surface due to lateral photocurrent transients. Opt. Lett. 2015, 40, 5164. [Google Scholar] [CrossRef]
- Cui, W.; Schiff-Kearn, A.W.; Zhang, E.; Couture, N.; Tani, F.; Novoa, D.; Russell, P.S.J.; Ménard, J.M. Broadband and tunable time-resolved THz system using argon-filled hollow-core photonic crystal fiber. APL Photonics 2018, 3, 111301. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, R.; Rovere, A.; Jeong, Y.-G.; Jia, Y.; Zanotto, L.; Légaré, F.; Schmidt, B.E.; Morandotti, R.; Razzari, L. Extremely broadband terahertz generation via pulse compression of an Ytterbium laser amplifier. Opt. Express 2019, 27, 32659. [Google Scholar] [CrossRef]
- Ropagnol, X.; Matoba, M.; Nkeck, J.E.; Blanchard, F.; Isgandarov, E.; Yumoto, J.; Ozaki, T. Efficient terahertz generation and detection using CdTe crystal pumped by ultrafast Ytterbium laser. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Paris, France, 1–6 September 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomasino, A.; Piccoli, R.; Jestin, Y.; Le Drogoff, B.; Chaker, M.; Yurtsever, A.; Busacca, A.; Razzari, L.; Morandotti, R. Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields. Nanomaterials 2021, 11, 283. https://doi.org/10.3390/nano11020283
Tomasino A, Piccoli R, Jestin Y, Le Drogoff B, Chaker M, Yurtsever A, Busacca A, Razzari L, Morandotti R. Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields. Nanomaterials. 2021; 11(2):283. https://doi.org/10.3390/nano11020283
Chicago/Turabian StyleTomasino, Alessandro, Riccardo Piccoli, Yoann Jestin, Boris Le Drogoff, Mohamed Chaker, Aycan Yurtsever, Alessandro Busacca, Luca Razzari, and Roberto Morandotti. 2021. "Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields" Nanomaterials 11, no. 2: 283. https://doi.org/10.3390/nano11020283
APA StyleTomasino, A., Piccoli, R., Jestin, Y., Le Drogoff, B., Chaker, M., Yurtsever, A., Busacca, A., Razzari, L., & Morandotti, R. (2021). Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields. Nanomaterials, 11(2), 283. https://doi.org/10.3390/nano11020283