Effective Removal of Crystal Violet Dye Using Neoteric Magnetic Nanostructures Based on Functionalized Poly(Benzofuran-co-Arylacetic Acid): Investigation of the Adsorption Behaviour and Reusability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Core-Shell Magnetic Nanostructures Based on Poly(Benzofuran-co-Arylacetic Acid) Functionalized with Folic Acid (MNP@PAAA-FA)
2.3. Instrumentation
2.4. Batch Adsorption Experiments
2.4.1. Equilibrium Study on CV Dye Adsorption by MNP@PAAA-FA
2.4.2. Kinetic Studies on CV Dye Adsorption by MNP@PAAA-FA
2.4.3. Regeneration Study of MNP@PAAA-FA
3. Results
3.1. Synthesis and Characterization of Magnetic Nanostructure Based on MNP@PAAA-FA
3.1.1. Infrared Spectroscopy
3.1.2. Transmission Electron Microscopy
3.1.3. TGA Measurements
3.1.4. Magnetic Properties
3.2. Batch Adsorption Experiments
3.2.1. MNP@PAAA-FA Porosity Analysis
3.2.2. Effect of Initial CV Concentrations and Contact Time
3.2.3. Equilibrium Studies on CV Dye Adsorption by MNP@PAAA-FA
3.2.4. Kinetic Studies on CV Dye Adsorption by MNP@PAAA-FA
3.2.5. MNP@PAAA-FA Regeneration Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Campos Ventura-Camargo, B.; Marin-Morales, M.A. Characterization and Toxicity—A Review. Text. Light Ind. Sci. Technol. 2013, 2, 85–103. [Google Scholar]
- Zaharia, C.; Suteu, D. Textile Organic Dyes—Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents—A Critical Overview. In Organic Pollutants Ten Years after the Stockholm Convention—Environmental and Analytical Update; Puzyn, T., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Markandeya; Shukla, S.P.; Mohan, D. Toxicity of disperse dyes and its removal from wastewater using various adsorbents: A Review. Res. J. Environ. Toxicol. 2017, 11, 72–89. [Google Scholar] [CrossRef] [Green Version]
- Kdasi, A.; Idris, A.; Saed, K.; Guan, C. Treatment of textile wastewater by advanced oxidation processes: A review. Global Nest. Int. J. 2004, 6, 222–230. [Google Scholar]
- Enesca, A.; Andronic, L. The Influence of Photoactive Heterostructures on the Photocatalytic Removal of Dyes and Pharmaceutical Active Compounds: A Mini-Review. Nanomaterials 2020, 10, 1766. [Google Scholar] [CrossRef]
- Maleš, L.; Fakin, D.; Bračič, M.; Gorgieva, S. Efficiency of Differently Processed Membranes Based on Cellulose as Cationic Dye Adsorbents. Nanomaterials 2020, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Bertolini, T.C.R.; Izidoro, J.C.; Magdalena, C.P.; Fungaro, D.A. Adsorption of Crystal Violet Dye from Aqueous Solution onto Zeolites from Coal Fly and Bottom Ashes. Orbital: Electron. J. Chem. 2013, 5, 179–191. [Google Scholar]
- Monash, P.; Pugazhenthi, G. Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption 2009, 15, 390–405. [Google Scholar] [CrossRef]
- Ratna; Padhi, B.S. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int. J. Environ. Sci. 2012, 3, 940–955. [Google Scholar]
- Malarvizhi, R.; Ho, Y.S. The influence of pH and the structure of the dye molecules on adsorption isotherm modelling using activated carbon. Desalination 2011, 264, 97–101. [Google Scholar] [CrossRef]
- Harja, M.; Ciobanu, G.; Favier, L.; Bulgariu, L.; Rusu, L. Adsorption of crystal violet dye onto modified ash. Bul. Inst. Polit. Iaşi 2016, 62, 27–37. [Google Scholar]
- Nasiri, R.; Arsalani, N. Synthesis and application of 3D graphene nanocomposite for the removal of cationic dyes from aqueous solutions: Response surface methodology design. J. Clean. Prod. 2018, 190, 63–71. [Google Scholar] [CrossRef]
- El-Sayed, G.O. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination 2011, 272, 225–232. [Google Scholar] [CrossRef]
- Silveira da Silva, J.; Pereira da Rosa, M.; Beck, P.H.; Peres, E.C.; Dotto, G.L.; Kessler, F.; Grasel, F.S. Preparation of an alternative adsorbent from Acacia Mearnsii wastes through acetosolv method and its application for dye removal. J. Clean. Prod. 2018, 180, 386–394. [Google Scholar] [CrossRef]
- Ilgin, P.; Ozay, H.; Ozay, O. Selective adsorption of cationic dyes from colored noxious effluent using a novel N-tert-butylmaleamic acid based hydrogels. React. Funct. Polym. 2019, 142, 189–198. [Google Scholar] [CrossRef]
- Sun, P.; Hui, C.; Khan, R.A.; Du, J.; Zhang, Q.; Zhao, Y.-H. Efficient removal of crystal violet using Fe3O4-coated biochar: The role of the Fe3O4 nanoparticles and modelling study their adsorption behaviour. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisk, J.D.; Batten, R.; Jones, G.; O’Reilly, J.P.; Shaw, A.M. pH dependence of the crystal violet adsorption isotherm at the silica-water interface. J. Phys. Chem. B 2005, 109, 14475–14480. [Google Scholar] [CrossRef]
- Islam, M.A.; Ali, I.; Karim, S.M.A.; Hossain Firoz, M.S.; Chowdhury, A.-N.; Morton, D.W.; Angove, M.J. Removal of dye from polluted water using novel nano manganese oxide-based materials. J. Water Process. Eng. 2019, 32, 100911. [Google Scholar] [CrossRef]
- Pargoletti, E.; Pifferi, V.; Falciola, L.; Facchinetti, G.; Re Depaolini, A.; Davoli, E.; Marelli, M.; Cappelletti, G. A detailed investigation of MnO 2 nanorods to be grown onto activated carbon. High efficiency towards aqueous methyl orange adsorption/degradation. Appl. Surf. Sci. 2019, 472, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Hamidzadeh, S.; Torabbeigi, M.; Shahtaheri, S.J. Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide. J. Environ. Health Sci. Eng. 2015, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, S.; Liu, X.; Yang, L.; Zhang, L. Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: Study in single- and binary-solute systems. Chem. Eng. Res. Des. 2015, 94, 726–735. [Google Scholar] [CrossRef]
- Lu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef]
- Cardete, M.A.; Mata-Álvarez, J.; Dosta, J.; Nieto-Sánchez, R. Biological nitrification control by addition of folic acid in a petrochemical wastewater treatment focused on organic matter removal. J. Environ. Chem. Eng. 2019, 7, 1–12. [Google Scholar] [CrossRef]
- Chakraborty, P.; Roy, B.; Bairi, P.; Nandi, A.K. Improved mechanical and photophysical properties of chitosan incorporated folic acid gel possessing the characteristics of dye and metal ion absorption. J. Mater. Chem. 2012, 22, 20291–20298. [Google Scholar] [CrossRef]
- Nan, A.; Leistner, J.; Turcu, R. Magnetite-polylactic acid nanoparticles by surface initiated organocatalysis ring opening polymerization. J. Nanoparticle Res. 2013, 15, 1–9. [Google Scholar] [CrossRef]
- Nan, A.; Radu, T.; Turcu, R. Poly(glycidyl methacrylate)-functionalized magnetic nanoparticles as platforms for linking functionalities, bioentities and organocatalyst. RSC Adv. 2016, 6, 43330–43338. [Google Scholar] [CrossRef]
- Nan, A.; Bunge, A.; Cîrcu, M.; Petran, A.; Hădade, N.D.; Filip, X. Poly(benzofuran-co-arylacetic acid)—a new type of highly functionalized polymers. Polym. Chem. 2017, 8, 3504–3514. [Google Scholar] [CrossRef]
- Nan, A.; Ganea, I.-V.; Turcu, R. Physicochemical properties of a new magnetic nanostructure based on poly(benzofurane-co-arylacetic acid). Anal. Lett. 2019, 52, 27–36. [Google Scholar] [CrossRef]
- Ganea, I.-V.; Nan, A.; Turcu, R.; Roba, C.; Neamtiu, I.A.; Baciu, C. Study of metal ion removal from aqueous systems using magnetic nanostructures based on functionalized poly(benzofuran-co-arylacetic acid). Anal. Lett. 2021, 54, 184–203. [Google Scholar] [CrossRef]
- Freundlich, H. Über die absorption in lösungen. Zeitschrift für Physikalische Chemie- Stöchiometrie und Verwandschaftslehre 1907, 57, 385–470. [Google Scholar]
- Dubinin, M.M.; Radushkevich, L.V. The equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect. 1947, 55, 331–337. [Google Scholar]
- Khan, A.R.; Ataullah, R.; Al-Haddad, A. Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J. Colloid Interface Sci. 1997, 194, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Temkin, M.J.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim. URSS 1940, 12, 217–222. [Google Scholar]
- Hamzaoui, M.; Bestani, B.; Benderdouche, N. The use of linear and nonlinear methods for adsorption isotherm optimization of basic green 4-dye onto sawdust-based activated carbon. J. Mater. Environ. Sci. 2018, 9, 1110–1118. [Google Scholar]
- Kocadagistan, B.; Kocadagistan, E. The effects of sunflower seed shell modifying process on textile dye adsorption: Kinetic, thermodynamic and equilibrium study. Desalin. Water. Treat. 2014, 57, 3168–3178. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Lagergren, S.; Sven, K. Zur theorie der sogennanten adsorptiongeloster stoffe. Kungliga Sevenska Vetenskapsakademiens. Handlingar. 1898, 24, 1–39. [Google Scholar]
- Weber, W.J.; Morris, J.C. Kinetic of adsorption on carbon from solution. Am. Soc. Civ. Eng. 1963, 89, 1–40. [Google Scholar]
- Liu, X.; Kaminski, M.D.; Guan, Y.; Chen, H.; Liu, H.; Rosengart, A.J. Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J. Magn. Magn. Mater. 2006, 306, 248–253. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Shirani, M.; Semnani, A.; Haddadi, H.; Habibollahi, S. Optimization of simultaneous removal of methylene blue, crystal violet, and fuchsine from aqueous solutions by magnetic NaY zeolite composite. Water Air Soil Pollut. 2014, 225, 2054. [Google Scholar] [CrossRef]
- Porkodi, K.; Vasanth Kumar, K. Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems. J Hazard Mater. 2007, 143, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Gupta, S.; Singh, A.K.; Sinha, S. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard Mater. 2011, 186, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- Shirsath, S.R.; Hage, A.P.; Zhou, M.; Sonawane, S.H.; Ashokkumar, M. Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: A potential responsive sorbent for removal of organic pollutant from water. Desalination 2011, 281, 429–437. [Google Scholar] [CrossRef]
- Alizadeh, N.; Shariati, S.; Besharati, N. Adsorption of Crystal Violet and Methylene Blue on Azolla and Fig Leaves Modified with Magnetite Iron Oxide Nanoparticles. Int. J. Environ. Res. 2017, 11, 197–206. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; Vardini, M.T.; Mahdavinia, G.R. Preparation of a Novel Magnetic Nanocomposite Hydrogel Based on Carboxymethyl Chitosan for the Adsorption of Crystal Violet as Cationic Dye. J. Chem. Health Risks 2018, 8, 289–304. [Google Scholar]
Adsorbent Material | q (mg g−1) | Reference |
---|---|---|
Magnetic NaY Zeolite | 2.00 | [42] |
Magnetic Calcium Ferrite Nanoparticles | 0.80 | [21] |
Nanomagnetic Iron Oxide | 16.50 | [20] |
Magnetic Charcoal | 10.00 | [43] |
Magnetic Carbon-Iron Oxide Nanocomposite | 81.70 | [44] |
Bentonite Iron Cobalt Nanocomposite | 13.00 | [45] |
Magnetite Nanoparticles Loaded Azolla | 25.00 | [46] |
Carboxymethyl Chitosan-Based Magnetic Nanocomposite | 72.40 | [47] |
MNP@PAAA-FA | 25.10 | Current Study |
Ci CV (mg L−1) | qe (mg g−1) | Pseudo-First Order | Pseudo-Second Order | Morris Weber Intra-Particle Diffusion | ||||||
---|---|---|---|---|---|---|---|---|---|---|
k1 (min−1) | qe1 (mg g−1) | adj. R2 | k2 (g mg−1 min−1) | qe2 (mg g−1) | adj. R2 | kipd (mg g−1 min−1/2) | I | adj. R2 | ||
0.5 | 1.50 × 10−1 | 1.60 × 10−17 | 11.00 × 10−5 | 1 | 5.90 × 10−13 | 1.50 × 10−1 | 1 | 0 | 1.50 × 10−1 | 1 |
1 | 3.00 × 10−1 | 3.20 × 10−17 | 12.00 × 10−5 | 1 | 5.90 × 10−13 | 3.00 × 10−1 | 1 | 0 | 3.00 × 10−1 | 1 |
10 | 29.60 × 10−1 | 24.80 × 10−3 | 28.70 × 10−1 | 0.93 | 7.40 × 10−1 | 29.80 × 10−1 | 0.99 | 2.70 × 10−2 | 26.40 × 10−1 | 0.81 |
100 | 87.40 × 10−1 | 27.60 × 10−3 | 80.30 × 10−1 | 0.94 | 49.00 × 10−1 | 96.80 × 10−1 | 0.99 | 50.30 × 10−2 | 25.70 × 10−1 | 0.96 |
250 | 2.80 × 10−1 | 17.00 × 10−3 | 87.30 × 10−1 | 0.81 | 1.50 × 10−1 | 2.80 × 10−1 | 0.99 | 64.20 × 10−2 | 1.90 × 10−1 | 0.96 |
500 | 1.40 × 10−1 | 20.90 × 10−3 | 64 × 10−1 | 0.94 | 1.10 × 10−1 | 1.50 × 10−1 | 0.99 | 59.40 × 10−2 | 73.00 × 10−1 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganea, I.-V.; Nan, A.; Baciu, C.; Turcu, R. Effective Removal of Crystal Violet Dye Using Neoteric Magnetic Nanostructures Based on Functionalized Poly(Benzofuran-co-Arylacetic Acid): Investigation of the Adsorption Behaviour and Reusability. Nanomaterials 2021, 11, 679. https://doi.org/10.3390/nano11030679
Ganea I-V, Nan A, Baciu C, Turcu R. Effective Removal of Crystal Violet Dye Using Neoteric Magnetic Nanostructures Based on Functionalized Poly(Benzofuran-co-Arylacetic Acid): Investigation of the Adsorption Behaviour and Reusability. Nanomaterials. 2021; 11(3):679. https://doi.org/10.3390/nano11030679
Chicago/Turabian StyleGanea, Iolanda-Veronica, Alexandrina Nan, Călin Baciu, and Rodica Turcu. 2021. "Effective Removal of Crystal Violet Dye Using Neoteric Magnetic Nanostructures Based on Functionalized Poly(Benzofuran-co-Arylacetic Acid): Investigation of the Adsorption Behaviour and Reusability" Nanomaterials 11, no. 3: 679. https://doi.org/10.3390/nano11030679
APA StyleGanea, I.-V., Nan, A., Baciu, C., & Turcu, R. (2021). Effective Removal of Crystal Violet Dye Using Neoteric Magnetic Nanostructures Based on Functionalized Poly(Benzofuran-co-Arylacetic Acid): Investigation of the Adsorption Behaviour and Reusability. Nanomaterials, 11(3), 679. https://doi.org/10.3390/nano11030679