Simultaneous Removal of Arsenic and Manganese from Synthetic Aqueous Solutions Using Polymer Gel Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Polymer Gels and Composites
2.3. Adsorption Experiment
2.4. Fourier Transform Infrared Spectroscopy
3. Results and Discussion
3.1. Adsorption of Mn Using the Cationic Gel and Its Composite
3.2. Comparative Adsorption of Mn
3.3. Simultaneous Adsorption of Mn and As
3.4. Surface Functional Group Characterisation Using FTIR Spectroscopy
3.4.1. FTIR Spectra of DMAPAAQ + FeOOH Gel Composite Following Mn Adsorption
3.4.2. FTIR Spectra of DMAPAAQ Gel Following Mn Adsorption
3.4.3. FTIR Spectra of DMAA + FeOOH Gel Composite Following Mn Adsorption
3.5. Effect of Experimental Parameters on the Adsorption of Mn by DMAPAAQ + FeOOH
3.6. Comparison to the Adsorption of Mn Using Other Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frisbie, S.H.; Ortega, R.; Maynard, D.M.; Sarkar, B. The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environ. Health Perspect. 2002, 110, 1147–1153. [Google Scholar] [CrossRef]
- Sarkar, A.M.; Rahman, A.K.M.L.; Samad, A.; Bhowmick, A.C.; Islam, J.B. Surface and ground water pollution in Bangladesh: A review. Asian Rev. Environ. Earth Sci. 2019, 6, 47–69. [Google Scholar] [CrossRef]
- Hasan, M.K.; Shahriar, A.; Jim, K.U. Water Pollution in Bangladesh and Its Impact on Public Health. Heliyon 2019, 5, e02145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Environment, Ministry of Environment and Forest, Bangladesh. Guide for Assessment of Effluent Treatment Plants. Available online: http://old.doe.gov.bd/publication_images/15_etp_assessment_guide.pdf (accessed on 12 April 2021).
- Verlicchi, P.; Grillini, V. Surface and groundwater quality in South African area—Analysis of the most critical pollutants for drinking purposes. Water 2019, 48, 3. [Google Scholar] [CrossRef] [Green Version]
- Bora, A.J.; Mohan, R.; Dutta, R.K. Simultaneous Removal of Arsenic, Iron and Manganese from Groundwater by Oxidation-Coagulation-Adsorption at Optimized PH. Water Supply 2017, 18, 60–70. [Google Scholar] [CrossRef]
- Budinova, T.; Savova, D.; Tsyntsarski, B.; Ania, C.O.; Cabal, B.; Parra, J.B.; Petrov, N. Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Appl. Surf. Sci. 2009, 255, 4650–4657. [Google Scholar] [CrossRef] [Green Version]
- Pires, V.G.R.; Lima, D.R.S.; Aquino, S.F.; Libânio, M. Evaluating arsenic and manganese removal from water by chlorine oxidation followed by clarification. Braz. J. Chem. Eng. 2015, 32, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Li, X.; Chu, Z.; Ren, Y.; Zhang, J. Distribution and Genetic Diversity of the Microorganisms in the Biofilter for the Simultaneous Removal of Arsenic, Iron and Manganese from Simulated Groundwater. Bioresour. Technol. 2014, 156, 384–388. [Google Scholar] [CrossRef] [PubMed]
- The Organizing Committee of the 14th International Conference on Tailings and Mine Waste. Tailings and Mine Waste 2010; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-0-203-83088-8. [Google Scholar]
- Safi, S.R.; Gotoh, T.; Iizawa, T.; Nakai, S. Development and regeneration of composite of cationic gel and iron hydroxide for adsorbing arsenic from ground water. Chemosphere 2019, 217, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Safi, S.R.; Gotoh, T.; Iizawa, T.; Nakai, S. Removal of arsenic using a cationic polymer gel impregnated with iron hydroxide. J. Vis. Exp. 2019, e59728. [Google Scholar] [CrossRef]
- Safi, S.R.; Senmoto, K.; Gotoh, T.; Iizawa, T.; Nakai, S. The effect of γ-FeOOH on enhancing arsenic adsorption from groundwater with DMAPAAQ + FeOOH gel composite. Sci. Rep. 2019, 9, 11909. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.; Morgan, J.J. Oxidative Removal of Mn(II) from Solution Catalysed by the γ-FeOOH (Lepidocrocite) Surface. Geochim. Cosmochim. Acta 1981, 45, 2377–2383. [Google Scholar] [CrossRef]
- Çifçi, D.İ.; Meriç, S. Manganese Adsorption by iron impregnated pumice composite. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 279–286. [Google Scholar] [CrossRef]
- Ociński, D. Optimization of Hybrid Polymer Preparation by Ex Situ Embedding of Waste Fe/Mn Oxides into Chitosan Matrix as an Effective As(III) and As(V) Sorbent. Environ. Sci. Pollut. Res. 2019, 26, 26026–26038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahim, M.; Mas Haris, M.R.H. Application of Biopolymer Composites in Arsenic Removal from Aqueous Medium: A Review. J. Radiat. Res. Appl. Sci. 2015, 8, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Kan, C.-C.; Aganon, M.C.; Futalan, C.M.; Dalida, M.L.P. Adsorption of Mn2+ from aqueous solution using Fe and Mn oxide-coated sand. J. Environ. Sci. 2013, 25, 1483–1491. [Google Scholar] [CrossRef]
- Langmuir Adsorption-An Overview | ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/engineering/langmuir-adsorption (accessed on 20 October 2020).
- Repo, E.; Mäkinen, M.; Rengaraj, S.; Natarajan, G.; Bhatnagar, A.; Sillanpää, M. Lepidocrocite and its heat-treated forms as effective arsenic adsorbents in aqueous medium. Chem. Eng. J. 2012, 180, 159–169. [Google Scholar] [CrossRef]
- Lin, S.; Yang, H.; Na, Z.; Lin, K. A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes. Chemosphere 2018, 192, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Bissen, M.; Frimmel, F.H. Arsenic—A Review. Part I: Occurrence, Toxicity, Speciation, Mobility. Acta Hydrochim. Hydrobiol. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Li, X.; Sun, Y.; Ma, J.; Lei, M.; Weng, L. Influence of calcium and phosphate on pH dependency of arsenite and arsenate adsorption to goethite. Chemosphere 2018, 199, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Yan, T.; Qiao, J.; Cao, H. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere 2016, 164, 32–40. [Google Scholar] [CrossRef]
- Dawodu, F.A.; Akpomie, K.G. Simultaneous adsorption of Ni(II) and Mn(II) Ions from aqueous solution unto a Nigerian kaolinite clay. J. Mater. Res. Technol. 2014, 3, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.M.; Martell, A.E. Critical Stability Constants, 1st ed.; Springer: New York, NY, USA, 1976; p. 5. [Google Scholar]
- Hui, K.S.; Chao, C.Y.H.; Kot, S.C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J. Hazard. Mater. 2005, 127, 89–101. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Elsevier Science: Berlin, Germany, 1984. [Google Scholar]
- Rajic, N.; Stojakovic, D.; Jevtic, S.; Zabukovec Logar, N.; Kovac, J.; Kaucic, V. Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja Deposit in Serbia. J. Hazard. Mater. 2009, 172, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Jusoh, A.B.; Cheng, W.H.; Low, W.M.; Nora’aini, A.; Megat Mohd Noor, M.J. Study on the Removal of Iron and Manganese in Groundwater by Granular Activated Carbon. Desalination 2005, 182, 347–353. [Google Scholar] [CrossRef]
- Erdem, E.; Karapinar, N.; Donat, R. The Removal of Heavy Metal Cations by Natural Zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef]
- Kroik, A.A.; Shramko, O.N.; Belous, N.V. Sewage Cleaning with Applying of Natural Sorbents. Chem. Technol. Water 1999, 21, 310. [Google Scholar]
- Abollino, O.; Aceto, M.; Malandrino, M.; Sarzanini, C.; Mentasti, E. Adsorption of Heavy Metals on Na-Montmorillonite. Effect of PH and Organic Substances. Water Res. 2003, 37, 1619–1627. [Google Scholar] [CrossRef]
- Doula, M.K. Removal of Mn2+ Ions from Drinking Water by Using Clinoptilolite and a Clinoptilolite–Fe Oxide System. Water Res. 2006, 40, 3167–3176. [Google Scholar] [CrossRef] [PubMed]
- Üçer, A.; Uyanik, A.; Aygün, Ş.F. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) Ions by Tannic Acid Immobilised Activated Carbon. Sep. Purif. Technol. 2006, 47, 113–118. [Google Scholar] [CrossRef]
- Kocaoba, S. Adsorption of Cd(II), Cr(III) and Mn(II) on Natural Sepiolite. Desalination 2009, 244, 24–30. [Google Scholar] [CrossRef]
- Ates, A. Role of Modification of Natural Zeolite in Removal of Manganese from Aqueous Solutions. Powder Technol. 2014, 264, 86–95. [Google Scholar] [CrossRef]
Isotherm Parameter | Mn | As | |
---|---|---|---|
Langmuir model | R2 | 0.92 | 0.997 |
Qmax, mg/g | 39.02 | 123.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safi, S.R.; Gotoh, T. Simultaneous Removal of Arsenic and Manganese from Synthetic Aqueous Solutions Using Polymer Gel Composites. Nanomaterials 2021, 11, 1032. https://doi.org/10.3390/nano11041032
Safi SR, Gotoh T. Simultaneous Removal of Arsenic and Manganese from Synthetic Aqueous Solutions Using Polymer Gel Composites. Nanomaterials. 2021; 11(4):1032. https://doi.org/10.3390/nano11041032
Chicago/Turabian StyleSafi, Syed Ragib, and Takehiko Gotoh. 2021. "Simultaneous Removal of Arsenic and Manganese from Synthetic Aqueous Solutions Using Polymer Gel Composites" Nanomaterials 11, no. 4: 1032. https://doi.org/10.3390/nano11041032
APA StyleSafi, S. R., & Gotoh, T. (2021). Simultaneous Removal of Arsenic and Manganese from Synthetic Aqueous Solutions Using Polymer Gel Composites. Nanomaterials, 11(4), 1032. https://doi.org/10.3390/nano11041032