Efficient ReSe2 Photodetectors with CVD Single-Crystal Graphene Contacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. CVD Growth and Transfer of Graphene and hBN
2.2. Devices Fabrication
2.3. Raman Spectroscopy
2.4. Atomic Force Microscopy (AFM)
2.5. Kelvin Probe Force Microscopy (KPFM)
2.6. Electrical Measurements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 1–15. [Google Scholar] [CrossRef]
- Jung, Y.; Ji, E.; Capasso, A.; Lee, G.-H. Recent Progresses in the Growth of Two-Dimensional Transition Metal Dichalcogenides. J. Korean Ceram. Soc. 2019, 56, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S.; Kis, A.; Coleman, J.N.; Wang, Q.H.; Kalantar-Zadeh, K. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Shan, J. Photonics and Optoelectronics of 2D Semiconductor Transition Metal Dichalcogenides. Nat. Photonics 2016, 10, 216–226. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Ahmed, S.; Yi, J. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors. Nano Micro Lett. 2017, 9, 1–23. [Google Scholar] [CrossRef]
- Kang, S.; Lee, D.; Kim, J.; Capasso, A.; Kang, H.S.; Park, J.W.; Lee, C.H.; Lee, G.H. 2D Semiconducting Materials for Electronic and Optoelectronic Applications: Potential and Challenge. 2D Mater. 2020, 7, 022003. [Google Scholar] [CrossRef]
- Yu, Z.G.; Cai, Y.; Zhang, Y.W. Robust Direct Bandgap Characteristics of One-and Two-Dimensional ReS 2. Sci. Rep. 2015, 5, 1–9. [Google Scholar]
- Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B.A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and Characterization of ReS2 and ReSe2 Layered Chalcogenide Single Crystals. Chem. Mater. 2016, 28, 3352–3359. [Google Scholar] [CrossRef]
- Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; et al. Monolayer Behaviour in Bulk ReS 2 Due to Electronic and Vibrational Decoupling. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chenet, D.A.; Aslan, O.B.; Huang, P.Y.; Fan, C.; Van Der Zande, A.M.; Heinz, T.F.; Hone, J.C. In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy. Nano Lett. 2015, 15, 5667–5672. [Google Scholar] [CrossRef]
- Yang, S.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J.B.; Li, S.S.; Li, J.; Wei, S.H. Layer-Dependent Electrical and Optoelectronic Responses of ReSe2 Nanosheet Transistors. Nanoscale 2014, 6, 7226–7231. [Google Scholar] [CrossRef]
- Aslan, O.B.; Chenet, D.A.; Van Der Zande, A.M.; Hone, J.C.; Heinz, T.F. Linearly Polarized Excitons in Single- and Few-Layer ReS2 Crystals. ACS Photonics 2016, 3, 96–101. [Google Scholar] [CrossRef]
- Wolverson, D.; Crampin, S.; Kazemi, A.S.; Ilie, A.; Bending, S.J. Raman Spectra of Monolayer, Few-Layer, and Bulk ReSe2: An Anisotropic Layered Semiconductor. ACS Nano 2014, 8, 11154–11164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.; Jin, Y.; Yuan, X.; Wang, W.; Zhang, C.; Tang, L.; Liu, S.; Zhou, P.; Hu, W.; Xiu, F. ReS2-Based Field-Effect Transistors and Photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Deng, H.X.; Wang, Z.; Huang, Y.; Wang, F.; Li, S.S.; Luo, J.W.; He, J. Sulfur Vacancy Activated Field Effect Transistors Based on ReS2 Nanosheets. Nanoscale 2015, 7, 15757–15762. [Google Scholar] [CrossRef]
- Dathbun, A.; Kim, Y.; Kim, S.; Yoo, Y.; Kang, M.S.; Lee, C.; Cho, J.H. Large-Area CVD-Grown Sub-2 V ReS2 Transistors and Logic Gates. Nano Lett. 2017, 17, 2999–3005. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Joe, H.E.; Yoon, H.S.; Yoo, S.; Kim, T.; Kang, K.; Min, B.K.; Jun, S.C. Contact Effect of ReS2/Metal Interface. ACS Appl. Mater. Interfaces 2017, 9, 26325–26332. [Google Scholar] [CrossRef]
- Shim, J.; Oh, A.; Kang, D.H.; Oh, S.; Jang, S.K.; Jeon, J.; Jeon, M.H.; Kim, M.; Choi, C.; Lee, J.; et al. Thin-Film Transistors: High-Performance 2D Rhenium Disulfide (ReS2) Transistors and Photodetectors by Oxygen Plasma Treatment (Adv. Mater. 32/2016). Adv. Mater. 2016, 28, 6984. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Gacem, K.; Boukhicha, M.; Chen, Z.; Uwanno, T.; Hattori, Y.; Taniguchi, T.; Ferraz Da Costa, M.C.; et al. Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic Stamping. 2D Mater. 2014, 1, 011002. [Google Scholar] [CrossRef]
- Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical Contacts to Two-Dimensional Semiconductors. Nat. Mater. 2015, 14, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wu, Z.; Han, C.; He, J.; Ni, Z.; Chen, W. Two-Dimensional Transition Metal Dichalcogenides: Interface and Defect Engineering. Chem. Soc. Rev. 2018, 47, 3100–3128. [Google Scholar] [CrossRef] [PubMed]
- Schulman, D.S.; Arnold, A.J.; Das, S. Contact Engineering for 2D Materials and Devices. Chem. Soc. Rev. 2018, 47, 3037–3058. [Google Scholar] [CrossRef]
- Dhahi, T.S.; Ahmad, S. Metal Contacts to 2d-Materials for Device Applications. Electr. Electron. Technol. Open Access J. 2018, 2, 31–38. [Google Scholar]
- Rhoderick, E.H. Metal-Semiconductor Contacts. IEE Proc. I Solid State Electron Devices 1982, 129, 1–14. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H.; Neto, A.H.C.; Castro Neto, A.H.; Neto, A.H.C. 2D Materials and van Der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A.; et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614–617. [Google Scholar] [CrossRef] [Green Version]
- Giubileo, F.; Di Bartolomeo, A. The Role of Contact Resistance in Graphene Field-Effect Devices. Prog. Surf. Sci. 2017, 92, 143–175. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Chen, H.Y.; Penumatcha, A.V.; Appenzeller, J. High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Lett. 2013, 13, 100–105. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Giovannetti, G.; Khomyakov, P.A.; Brocks, G.; Kelly, P.J.; Van Den Brink, J. Substrate-Induced Band Gap in Graphene on Hexagonal Boron Nitride: Ab Initio Density Functional Calculations. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 073103. [Google Scholar] [CrossRef] [Green Version]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron Nitride Substrates for High-Quality Graphene Electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Cabral, P.D.; Domingues, T.; Machado, G.; Chicharo, A.; Cerqueira, F.; Fernandes, E.; Athayde, E.; Alpuim, P.; Borme, J. Clean-Room Lithographical Processes for the Fabrication of Graphene Biosensors. Materials (Basel) 2020, 13, 5728. [Google Scholar] [CrossRef]
- Sofer, Z.; Sedmidubský, D.; Luxa, J.; Bouša, D.; Huber, Š.; Lazar, P.; Veselý, M.; Pumera, M. Universal Method for Large-Scale Synthesis of Layered Transition Metal Dichalcogenides. Chem. Eur. J. 2017, 23, 10177–10186. [Google Scholar] [CrossRef]
- Gnisci, A.; Faggio, G.; Messina, G.; Kwon, J.; Lee, J.-Y.; Lee, G.-H.; Dikonimos, T.; Lisi, N.; Capasso, A. Ethanol-CVD Growth of Sub-Mm Single-Crystal Graphene on Flat Cu Surfaces. J. Phys. Chem. C 2018, 122. [Google Scholar] [CrossRef]
- Li, X.; Magnuson, C.W.; Venugopal, A.; Tromp, R.M.; Hannon, J.B.; Vogel, E.M.; Colombo, L.; Ruoff, R.S. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. J. Am. Chem. Soc. 2011, 133, 2816–2819. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, M.; Gan, L.; Li, H.; Ma, Y.; Zhai, T. Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe 2 Flakes for Anisotropic Raman Property and Optoelectronic Application. Adv. Mater. 2016, 28, 8296–8301. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Basko, D.M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capasso, A.; Dikonimos, T.; Sarto, F.; Tamburrano, A.; De Bellis, G.; Sarto, M.S.M.S.; Faggio, G.; Malara, A.; Messina, G.; Lisi, N. Nitrogen-Doped Graphene Films from Chemical Vapor Deposition of Pyridine: Influence of Process Parameters on the Electrical and Optical Properties. Beilstein J. Nanotechnol. 2015, 6, 2028–2038. [Google Scholar] [CrossRef] [Green Version]
- Faggio, G.; Capasso, A.; Messina, G.; Santangelo, S.; Dikonimos, T.; Gagliardi, S.; Giorgi, R.; Morandi, V.; Ortolani, L.; Lisi, N. High-Temperature Growth of Graphene Films on Copper Foils by Ethanol Chemical Vapor Deposition. J. Phys. Chem. C 2013, 117, 21569–21576. [Google Scholar] [CrossRef] [Green Version]
- Faggio, G.; Messina, G.; Lofaro, C.; Lisi, N.; Capasso, A. Recent Advancements on the CVD of Graphene on Copper from Ethanol Vapor. C J. Carbon Res. 2020, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Capasso, A.; Bellani, S.; Palma, A.L.; Najafi, L.; Del Rio Castillo, A.E.; Curreli, N.; Cina, L.; Miseikis, V.; Coletti, C.; Calogero, G.; et al. CVD-Graphene/Graphene Flakes Dual-Films as Advanced DSSC Counter Electrodes. 2D Mater. 2019, 6, 035007. [Google Scholar] [CrossRef]
- Jo, S.H.; Lee, H.W.; Shim, J.; Heo, K.; Kim, M.; Song, Y.J.; Park, J.H. Highly Efficient Infrared Photodetection in a Gate-Controllable Van Der Waals Heterojunction with Staggered Bandgap Alignment. Adv. Sci. 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Capasso, A.; Salamandra, L.; Faggio, G.; Dikonimos, T.; Buonocore, F.; Morandi, V.; Ortolani, L.; Lisi, N. Chemical Vapor Deposited Graphene-Based Derivative As High-Performance Hole Transport Material for Organic Photovoltaics. ACS Appl. Mater. Interfaces 2016, 8, 23844–23853. [Google Scholar] [CrossRef]
- Hofmann, A.; Renee, K.; Christian, M. Handbook of Organic Materials for Electronic and Photonic Devices. In Handbook of Organic Materials for Electronic and Photonic Devices; Oksana, O., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 429–449. ISBN 978-0-08-102284-9. [Google Scholar]
- Gorbachev, R.V.; Riaz, I.; Nair, R.R.; Jalil, R.; Britnell, L.; Belle, B.D.; Hill, E.W.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small 2011, 7, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Schmitsdorf, R.F. Explanation of the Linear Correlation between Barrier Heights and Ideality Factors of Real Metal-Semiconductor Contacts by Laterally Nonuniform Schottky Barriers. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1997, 15, 1221. [Google Scholar] [CrossRef]
- Ahmad, F.; Mansoori, A.; Bansal, S.; Dhahi, T.S.; Ahmad, S. Device Applications of Metal-2D-Materials Interfaces A Short Review. Eur. J. Eng. Res. Sci. 2018, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S. Microwave and Millimetre Wave Semiconductor Materials Technology; Tata Mcgraw-hill Publishing Company Limited: New Delhi, India, 1998. [Google Scholar]
- Wang, S.; Yu, Z.; Wang, X. Electrical Contacts to Two-Dimensional Transition-Metal Dichalcogenides. J. Semicond. 2018, 39, 1–8. [Google Scholar] [CrossRef]
- Byun, K.E.; Chung, H.J.; Lee, J.; Yang, H.; Song, H.J.; Heo, J.; Seo, D.H.; Park, S.; Hwang, S.W.; Yoo, I.; et al. Graphene for True Ohmic Contact at Metal-Semiconductor Junctions. Nano Lett. 2013, 13, 4001–4005. [Google Scholar] [CrossRef]
- Qiu, D.; Kim, E.K. Electrically Tunable and Negative Schottky Barriers in Multi-Layered Graphene/MoS 2 Heterostructured Transistors. Sci. Rep. 2015, 5, 13743. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Cheng, H.C.; Yang, S.; Zhu, E.; He, Q.; Ding, M.; Li, D.; Guo, J.; Weiss, N.O.; et al. Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes. Nano Lett. 2015, 15, 3030–3034. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Heo, J.; Park, S.; Song, H.J.; Seo, D.H.; Byun, K.E.; Kim, P.; Yoo, I.K.; Chung, H.J.; Kim, K. Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science 2012, 336, 1140–1143. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.K.; Ulstrup, S.; Gunasekera, S.M.; Kim, J.; Lim, S.Y.; Moreschini, L.; Oh, J.S.; Chun, S.H.; Jozwiak, C.; Bostwick, A.; et al. Visualizing Orbital Content of Electronic Bands in Anisotropic 2D Semiconducting ReSe2. ACS Nano 2020, 14, 7880–7891. [Google Scholar] [CrossRef]
- Leicht, G.; Berger, H.; Levy, F. The Growth of N- and p-Type ReS2 and ReSe2 Single Crystals and Their Electrical Properties. Solid State Commun. 1987, 61, 531–534. [Google Scholar] [CrossRef]
- Zhao, Q.; Jie, W.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. InSe Schottky Diodes Based on Van Der Waals Contacts. Adv. Funct. Mater. 2020, 30, 2001307. [Google Scholar] [CrossRef]
- Rose, A. Concepts in Photoconductivity and Allied Problems, 2nd ed.; Robert E. Krieger Publishing Co.: Huntington, New York, NY, USA, 1978. [Google Scholar]
- Han, X.; Xing, J.; Xu, H.; Huang, Y.; Li, D.; Lu, J.; Li, P.; Wu, Y. Remarkable Improved Photoelectric Performance of SnS2 Field-Effect Transistor with Au Plasmonic Nanostructures. Nanotechnology 2020, 31, 215201. [Google Scholar] [CrossRef] [PubMed]
- Claro, M.S.; Grzonka, J.; Nicoara, N.; Ferreira, P.J.; Sadewasser, S. Wafer-Scale Fabrication of 2D β-In2Se3 Photodetectors. Adv. Opt. Mater. 2021, 9, 2001034. [Google Scholar] [CrossRef]
- Kim, J.; Heo, K.; Kang, D.H.; Shin, C.; Lee, S.; Yu, H.Y.; Park, J.H. Rhenium Diselenide (ReSe2) Near-Infrared Photodetector: Performance Enhancement by Selective p-Doping Technique. Adv. Sci. 2019, 6, 1901255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscema, M.; Island, J.O.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; Van Der Zant, H.S.J.; Castellanos-Gomez, A. Photocurrent Generation with Two-Dimensional van Der Waals Semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P. Pearsall Photonic Essentials, 1st ed.; Tata Mcgraw-Hill Publishing Company Limited: New Delhi, India, 2003. [Google Scholar]
- Cui, F.; Li, X.; Feng, Q.; Yin, J.; Zhou, L.; Liu, D.; Liu, K.; He, X.; Liang, X.; Liu, S.; et al. Epitaxial Growth of Large-Area and Highly Crystalline Anisotropic ReSe2 Atomic Layer. Nano Res. 2017, 10, 2732–2742. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Huang, L.; Peng, Y.; Huo, N.; Wu, K.; Xia, C.; Wei, Z.; Tongay, S.; Li, J. Enhanced Rectification, Transport Property and Photocurrent Generation of Multilayer ReSe2/MoS2 p–n Heterojunctions. Nano Res. 2016, 9, 507–516. [Google Scholar] [CrossRef]
- Elahi, E.; Khan, M.F.; Rehman, S.; Khalil, H.M.W.; Rehman, M.A.; Kim, D.K.; Kim, H.; Khan, K.; Shahzad, M.; Iqbal, M.W.; et al. Enhanced Electrical and Broad Spectral (UV-Vis-NIR) Photodetection in a Gr/ReSe2/Gr Heterojunction. Dalt. Trans. 2020, 49, 10017–10027. [Google Scholar] [CrossRef]
- Ali, M.H.; Kang, D.-H.; Park, J.-H. Rhenium Diselenide (ReSe2) Infrared Photodetector Enhanced by (3-Aminopropyl)Trimethoxysilane (APTMS) Treatment. Org. Electron. 2018, 53, 14–19. [Google Scholar] [CrossRef]
- Yang, S.; Tongay, S.; Yue, Q.; Li, Y.; Li, B.; Lu, F. High-Performance Few-Layer Mo-Doped ReSe2 Nanosheet Photodetectors. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zheng, S.; Chaturvedi, A.; Zólyomi, V.; Zhou, J.; Fu, Q.; Zhu, C.; Yu, P.; Zeng, Q.; Drummond, N.D.; et al. Optoelectronic Properties of Atomically Thin ReSSe with Weak Interlayer Coupling. Nanoscale 2016, 8, 5826–5834. [Google Scholar] [CrossRef] [Green Version]
- Ishigami, M.; Chen, J.H.; Cullen, W.G.; Fuhrer, M.S.; Williams, E.D. Atomic Structure of Graphene on SiO 2. Nano Lett. 2007, 7, 1643–1648. [Google Scholar] [CrossRef] [Green Version]
- Ando, T. Screening Effect and Impurity Scattering in Monolayer Graphene. J. Phys. Soc. Japan 2006, 75, 074716. [Google Scholar] [CrossRef] [Green Version]
- Fratini, S.; Guinea, F. Substrate-Limited Electron Dynamics in Graphene. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 195415. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Leroy, B.J. Scanning Tunnelling Microscopy and Spectroscopy of Ultra-Flat Graphene on Hexagonal Boron Nitride. Nat. Mater. 2011, 10, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Meric, I.; Han, M.Y.; Young, A.F.; Ozyilmaz, B.; Kim, P.; Shepard, K.L. Current Saturation in Zero-Bandgap, Top-Gated Graphene Field-Effect Transistors. Nat. Nanotechnol. 2008, 3, 654–659. [Google Scholar] [CrossRef]
- Duan, J.; Wang, X.; Lai, X.; Li, G.; Watanabe, K.; Taniguchi, T.; Zebarjadi, M.; Andrei, E.Y. High Thermoelectricpower Factor in Graphene/HBN Devices. Proc. Natl. Acad. Sci. USA 2016, 113, 14272–14276. [Google Scholar] [CrossRef] [Green Version]
Au/ReSe2 | GSC/ReSe2 | hBN/GSC/ReSe2 | |
---|---|---|---|
Iph (A) | 4.5 × 10−10 | 1.5 × 10−6 | 4.6 × 10−4 |
A (m2) | 4.9 × 10−13 | 5.1 × 10−13 | 5.2 × 10−11 |
F (V/m) | 6.7 × 105 | 3.2 × 105 | 3.6× 105 |
σph (S/m) | 1.4 × 10−3 | 9.2 | 24.7 |
Ref. | Photodetector | Thickness (nm) | Active Area, S (µm2) | Incident λ (nm) | Incident Power | Iph | R (A/W) | EQE (%) |
---|---|---|---|---|---|---|---|---|
Our work | Exfoliated ReSe2 and Au electrodes on Si/SiO2 | 58 | 26 | 530 | 3.3/2.9 mW cm−2 | 4.0/1.6 × 10−11 (Vbias = 2 V) | 4.7 × 10−2 | 11 |
790 | 2.1 × 10−2 | 3 | ||||||
Our work | Exfoliated ReSe2 and Gr electrodes on Si/SiO2 | 95 | 34 | 530 | 2.7/1.9 mW cm−2 | 4 × 10−7/2.1 × 10−7 A (Vbias = 2 V) | 4.7 × 102 | 1099 |
790 | 3.3 × 102 | 518 | ||||||
[67] | ML Gr/ReSe2/ML Gr heterostructure on Si/SiO2 | 14.5 | 18 | 220 | 0.14 mW cm−2 | 4.5 × 10−5 A (Vbias = 5 V) | 1.2 × 106 | 64 |
[38] | CVD ReSe2 and Cr/Au electrodes on Si/SiO2 | 4.2 | 5.8 | 808 | 5.7 × 102 mW cm−2 | 9.7 × 10−8 A (Vbias = 5 V) | 2.98 | 458 |
[65] | CVD ReSe2 and Cr/Au electrodes on Si/SiO2 | 0.71 | 19 | 850 | 6.1/7.0 mW cm−2 | 1 × 10−8 A/4 × 10−9 A (Vbias = 1 V) | 8.4 | 12 |
940 | 5.1 | 7 | ||||||
[12] | Exfoliated ReSe2 and Cr/Au electrodes on Si/SiO2 | 0.66 | 4 | 633 | 1 × 102 mW cm−2 | 7.91 × 10−8 A (Vbias = 0.5 V) | 17.8 | 3048 |
[66] | Exfoliated ReSe2 and Cr/Au electrodes on Si/SiO2 | 65 | N/A | 633 | 2.48 mW cm−2 | 1 × 10−8 A (Vbias = 1 V) | 2.22 | 4 |
[68] | Exfoliated ReSe2 and Ti/Pd electrodes on Si/SiO2 | 80 | 25 | 785 | 1 mW cm−2 | 5.9 × 10−8 A (Vbias = 5 V) | 4.3 × 103 | 6791 |
[44] | Exfoliated ReSe2 and Ti electrodes on Si/SiO2 | 50.4 | 25 | 405 | 1 nW | 3.62 × 10−7 A μm−1 (Vbias = 5 V) | 1.1 × 103 | 3367 |
[68] | Exfoliated ReSe2 and Pt electrodes on Si/SiO2 | 35 | 25 | 520 | 10 nW | 1.61 × 10−7 A μm−1 (Vbias = 5 V) | 79.99 | 191 |
[44] | Exfoliated ReSe2 + Mose2 heterostructure and Cr/Au electrodes on Si/SiO2 | 60 | 141 | 633 | 5.15 mW cm−2 | 4.9 × 10−8 A (Vbias = 1 V) | 6.75 | 1266 |
[62] | Exfoliated ReSe2 p-doped with HCl and Pt electrodes on Si/SiO2 | 35 | 25 | 520 | 10 nW | 6.32 × 10−7 A μm−1 (Vbias = 5 V) | 3.144 × 102 | 750 |
[69] | Exfoliated Mo:ReSe2 and Cr/Au electrodes on Si/SiO2 | 4.5 | 336 | 633 | 2 × 101 mW cm−2 | 2.2 × 10−6 A (Vbias = 1 V) | 55.5 | 109 |
[70] | Exfoliated ReSSe and Ti/Au electrodes on Si/SiO2 | 3 | 22 | 532 | 3.2 mW cm−2 | 5 × 10−9 A μm−1 (Vbias = 5 V) | 8 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, B.; Rodrigues, J.; Sompalle, B.; Liao, C.-D.; Nicoara, N.; Borme, J.; Cerqueira, F.; Claro, M.; Sadewasser, S.; Alpuim, P.; et al. Efficient ReSe2 Photodetectors with CVD Single-Crystal Graphene Contacts. Nanomaterials 2021, 11, 1650. https://doi.org/10.3390/nano11071650
Silva B, Rodrigues J, Sompalle B, Liao C-D, Nicoara N, Borme J, Cerqueira F, Claro M, Sadewasser S, Alpuim P, et al. Efficient ReSe2 Photodetectors with CVD Single-Crystal Graphene Contacts. Nanomaterials. 2021; 11(7):1650. https://doi.org/10.3390/nano11071650
Chicago/Turabian StyleSilva, Bruna, João Rodrigues, Balaji Sompalle, Chun-Da Liao, Nicoleta Nicoara, Jérôme Borme, Fátima Cerqueira, Marcel Claro, Sascha Sadewasser, Pedro Alpuim, and et al. 2021. "Efficient ReSe2 Photodetectors with CVD Single-Crystal Graphene Contacts" Nanomaterials 11, no. 7: 1650. https://doi.org/10.3390/nano11071650
APA StyleSilva, B., Rodrigues, J., Sompalle, B., Liao, C. -D., Nicoara, N., Borme, J., Cerqueira, F., Claro, M., Sadewasser, S., Alpuim, P., & Capasso, A. (2021). Efficient ReSe2 Photodetectors with CVD Single-Crystal Graphene Contacts. Nanomaterials, 11(7), 1650. https://doi.org/10.3390/nano11071650