Hydroxyapatite Functionalized Calcium Carbonate Composites with Ag Nanoparticles: An Integrated Characterization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ag and HA-FCC Composites
- HA-FCC (1g) was equilibrated with an almost saturated solution of silver acetate (100 mg) in deionized water (10 mL) and the composite was recovered by filtration to obtain the sample 1. Afterwards, the sample 1 was either irradiated with a Hg lamp equipped with a long pass filter to enable exposure to 430–800 nm radiation for 120 min (obtaining sample 2) or it was calcined at 300 °C to produce the sample 5;
- A dispersion of HA-FCC (1 g) was mixed with an aqueous almost saturated solution of silver acetate, then it was heated at 37 °C until dryness (sample 3) and then irradiated as for sample 2 in order to obtain the sample 4;
- For the synthesis of samples 6–9, a solution of reducing agent (NaBH4, or trisodium citrate) was dropped, under high power ultrasound irradiation for 45 min at 50% of amplitude and at 25 °C, to an aqueous dispersion of silver acetate (50 mg) and HA-FCC (1 g). The solid material was recovered by centrifugation. Two different amounts of silver acetate (50 mg and 100 mg) were used to obtain four different composites: the samples 6 and 7, when trisodium citrate was used; the samples 8 and 9, when the reducing agent was NaBH4). The high-power ultrasound irradiation was performed by using an Ultrasonic processor VCX750 (Sonics & Materials, Inc., Newtown, CT, USA), 20 kHz, with a diameter tip of 13 mm.
2.2. Characterization
Preliminary Discussions
3. Results and Discussion
3.1. XRD and TEM Results
3.2. XPS Results
3.2.1. HA-FCC Reference Sample
3.2.2. Reference Samples of Ag
3.2.3. Composite Samples with Ag NPs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prakash, J.; Pivin, J.C.; Swart, H.C. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications. Adv. Colloid Interface Sci. 2015, 226, 187–202. [Google Scholar] [CrossRef]
- Da Silva, A.B.; Rufato, K.B.; De Oliveira, A.C.; Souza, P.R.; Da Silva, E.P.; Edvani, B.; Muniz, C.; Vilsinski, B.H.; Martins, A.F. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. Int. J. Biol. Macromol. 2020, 161, 977–998. [Google Scholar] [CrossRef] [PubMed]
- Dongmei, H.; Bachirou, G.L.; Yantao, X.; Yong, S.; Xing, H. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage. Appl. Energy 2020, 264, 114674. [Google Scholar]
- Satulu, V.; Mitu, B.; Ion, V.; Marascu, V.; Matei, E.; Stancu, C.; Dinescu, G. Combining Fluorinated Polymers with Ag Nanoparticles as a Route to Enhance Optical Properties of Composite Materials. Polymers 2020, 12, 1640. [Google Scholar] [CrossRef]
- Xie, R.; Wei, T.; Bai, S.; Wang, Z. The synthesis and catalytic activity of bimetallic CuAg nanoparticles and their magnetic hybrid composite materials. New J. Chem. 2020, 44, 9684. [Google Scholar] [CrossRef]
- Ituena, E.; Ekeminic, E.; Yuanhuaa, L.; Lia, R.; Singh, A. Mitigation of microbial biodeterioration and acid corrosion of pipework steel using Citrus reticulata peels extract mediated copper nanoparticles composite. Int. Biodeterior. Biodegrad. 2020, 149, 104935. [Google Scholar] [CrossRef]
- Prosposito, P.; Burratti, L.; Venditti, I. Silver Nanoparticles as Colorimetric Sensors for Water Pollutants. Chemosensor 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Chem. Res. 2008, 41, 1578–1586. [Google Scholar] [CrossRef]
- Gambucci, M.; Aluigi, A.; Seri, M.; Sotgiu, G.; Zampini, G.; Donnadio, A.; Torreggiani, A.; Zamboni, R.; Latterini, L.; Posati, T. Effect of Chemically Engineered Au/Ag Nanorods on the Optical and Mechanical Properties of Keratin Based Films. Front. Chem. 2020, 8, 158. [Google Scholar] [CrossRef]
- Barbalinardo, M.; Antosova, A.; Gambucci, M.; Bednarikova, Z.; Albonetti, C.; Valle, F.; Sassi, P.; Latterini, L.; Gazova, Z.; Bystrenova, E. Effect of metallic nanoparticles on amyloid fibrils and their influence to neural cell toxicity. Nano Res. 2020, 13, 1081–1089. [Google Scholar] [CrossRef]
- Latterini, L.; Tarpani, L. Hierarchical Assembly of Nanostructures to Decouple Fluorescence and Photothermal Effect. J. Phys. Chem. C 2011, 115, 21098–21104. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Azharuddin, M.; Ozgur, E.; Zhu, G.H.; Uzun, L.; Das, D.; Turner, A.P.F.; Patra, H.K. A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. 2019, 55, 6964–6996. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jun, B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; Ting, K.; Zhang, X.; Soo, C.; Zheng, Z. Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine. J. Nanomater. 2015, 2015, 696918. [Google Scholar] [CrossRef] [Green Version]
- Ramstedta, M.; Franklynb, P. Difficulties in determining valence for Ag0 nanoparticles using XPS—characterization of nanoparticles inside poly (3-sulphopropyl methacrylate) brushes. Surf. Interface Anal. 2010, 42, 855–858. [Google Scholar] [CrossRef]
- Aruna, I.; Mehta, B.R.; Malhotra, L.K.; Shivaprasad, S.M. Size dependence of core and valence binding energies in Pd nanoparticles: Interplay of quantum confinement and coordination reduction. J. Appl. Phys. 2008, 104, 064308. [Google Scholar] [CrossRef] [Green Version]
- Bolli, E.; Mezzi, A.; Burratti, L.; Prosposito, P.; Casciardi, S.; Kaciulis, S. X-ray and UV photoelectron spectroscopy of Ag nanoclusters. Surf. Interface Anal. 2020, 52, 1017–1022. [Google Scholar] [CrossRef]
- Toro, R.G.; Adel, A.M.; de Caro, T.; Federici, F.; Cerri, L.; Bolli, E.; Mezzi, A.; Barbalinardo, M.; Gentili, D.; Cavallini, M.; et al. Evaluation of Long–Lasting Antibacterial Properties and Cytotoxic Behavior of Functionalized Silver-Nanocellulose Composite. Materials 2021, 14, 4198. [Google Scholar] [CrossRef]
- Lopez-Salido, I.; Lim, D.C.; Kim, Y.D. Ag nanoparticles on highly ordered pyrolytic graphite (HOPG) surfaces studied using STM and XPS. Surf. Sci. 2005, 588, 6–18. [Google Scholar] [CrossRef]
- Peters, S.; Peredkov, S.; Neeb, M.; Eberhardt, W.; Al-Hadac, M. Size-dependent XPS spectra of small supported Au-clusters. Surf. Sci. 2013, 608, 129–134. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Vijayakrishnan, V.; Aiyer, H.N.; Kulkarni, G.U.; Subbanna, G.N. An investigation of well-characterized small gold clusters by photoelectron spectroscopy, tunneling spectroscopy, and cognate techniques. J. Phys. Chem. 1993, 97, 11157–11160. [Google Scholar] [CrossRef]
- Paszti, Z.; Peto, G.; Horvàth, Z.E.; Karacs, A.; Guczi, L. Electronic structure of Ag nanoparticles deposited on Si (100). Solid State Commun. 1998, 107, 329–333. [Google Scholar] [CrossRef]
- Hummer, R.E. Electronic properties of Materials; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Preisig, D.; Haid, D.; Varum, F.J.O.; Bravo, R.; Alles, R.; Huwyler, J.; Puchkov, M. Drug loading into porous calcium carbonate microparticles by solvent evaporation. Eur. J. Pharm. Biopharm. 2014, 87, 548–558. [Google Scholar] [CrossRef]
- Stirnimann, T.; Di Maiuta, N.; Gerard, D.E.; Alles, R.; Huwyler, J.; Puchkov, M. Functionalized Calcium Carbonate as a Novel Pharmaceutical Excipient for the Preparation of Orally Dispersible Tablets. Pharm. Res. 2013, 30, 1915–1925. [Google Scholar] [CrossRef]
- Clement, J.L.; Jarrett, P.S. Antibacterial Silver. Metal Based Drugs 1994, 1, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Sim, W.; Barnard, R.T.; Blaskovich, M.A.T.; Ziora, Z.M. Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007–2017). Antibiotics 2018, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Ferraria, A.M.; Carapeto, A.P.; Botelho do Rego, A.M. X-ray photoelectron spectroscopy: Silver salts revisited. Vacuum 2012, 86, 1988–1999. [Google Scholar] [CrossRef]
- Lu, H.B.; Campbell, C.T.; Graham, D.J.; Ratner, B.D. Surface Characterization of Hydroxyapatite and Related Calcium Phosphates by XPS and TOF-SIMS. Anal. Chem. 2000, 72, 2886–2894. [Google Scholar] [CrossRef]
- Chusuei, C.C.; Goodman, D.W.; Van Stipdonk, M.J.; Justes, D.R.; Schweikert, E.A. Calcium Phosphate Phase Identification Using XPS and Time-of-Flight Cluster SIMS. Anal. Chem. 1999, 71, 149–153. [Google Scholar] [CrossRef]
- Payne, S.A.; Katti, D.R.; Katti, K.S. Probing electronic structure of biomineralized hydroxyapatite inside nanoclay galleries. Micron 2016, 90, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protheroe, A.R.; Steinbrunn, A.; Gallon, T.E. The Electron Energy Loss Spectra of Some Alkaline Earth Oxides. Surf. Sci. 1983, 126, 534–542. [Google Scholar] [CrossRef]
- Waltenburg, H.N.; Møller, P.J. Growth of ultrathin Cu films on CaO(100). Surf. Sci. 1999, 439, 139–145. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Perkin-Elmer: Eden Prairie, MN, USA, 1992; p. 207. [Google Scholar]
- Aspromonte, S.G.; Mizrahi, M.D.; Schneeberger, F.A.; Ramallo López, J.M.; Boix, A.V. Study of the Nature and Location of Silver in Ag-exchanged Mordenite Catalysts. Characterization by Spectroscopic Techniques. J. Phys. Chem. C 2013, 117, 25433–25442. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, A.M.; Neves, I.C. Study of silver species stabilized in different microporous zeolites. Microporous Mesoporous Mater. 2013, 181, 83–87. [Google Scholar] [CrossRef]
- Tang, B.; Xu, S.; An, J.; Zhao, B.; Xu, W. Photoinduced Shape Conversion and Reconstruction of Silver Nanoprisms. J. Phys. Chem. C 2009, 113, 7025–7030. [Google Scholar] [CrossRef]
- Sato-Berrú, R.; Redón, R.; Vázquez-Olmos, A.; Saniger, J. Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2009, 40, 376–380. [Google Scholar] [CrossRef]
- Ambrogi, V.; Pietrella, D.; Donnadio, A.; Latterini, L.; Di Michele, A.; Luffarelli, I.; Ricci, M. Biocompatible alginate silica supported silver nanoparticles composite films for wound dressing with antibiofilm activity. Mater. Sci. Eng. C 2020, 112, 110863. [Google Scholar] [CrossRef]
- Ambrogi, V.; Donnadio, A.; Pietrella, D.; Latterini, L.; Alunni Proietti, F.; Marmottini, F.; Padeletti, G.; Kaciulis, S.; Giovagnoli, S.; Ricci, M. Chitosan films containing mesoporous SBA-15 supported silver nanoparticles for wound dressing. J. Mater. Chem. B 2014, 2, 6054–6063. [Google Scholar] [CrossRef] [PubMed]
Peak | BE, eV (±0.1 eV) | Atomic % | Bonds |
---|---|---|---|
C1s-A | 285.0 | 15.5 | Adventitious carbon |
C1s-B | 287.0 | 2.2 | C=O |
C1s-C | 289.9 | 2.4 | −C=O |
Ca2p3/2 | 347.7 | 19.3 | Ca2+ |
O1s-A | 531.6 | 41.5 | Phosphate, C−O, OH− |
O1s-B | 533.9 | 5.9 | C=O, H2O |
P2p3/2 | 133.3 | 13.3 | Phosphate |
Compound | Ag 3d5/2 BE, eV (±0.1 eV) | Ag M4N5N5 KE, eV (±0.1 eV) | α’, eV (±0.2 eV) | Ag Oxidation State |
---|---|---|---|---|
Ag3PO4 | 368.4 | 354.1 | 722.5 | +1 |
Ag2O | 367.9 | 356.3 | 724.2 | +1 |
AgCH3COO | 368.4 | 354.3 | 722.7 | +1 |
Composite Samples with Ag | Ag Reduction Treatment | Ag 3d5/2 BE, eV (±0.1 eV) | Ag M4N5N5 KE, eV (±0.1 eV) | α’, eV (±0.2 eV) | Ag ox. State |
---|---|---|---|---|---|
Sample 1 | Adsorption | 368.2 | 354.3 | 722.5 | +1 |
Sample 2 | Adsorption and irradiation | 368.2 | 355.7 | 723.9 | +1 |
Sample 3 | Wet mixing | 368.2 | 354.5 | 722.7 | +1 |
Sample 4 | Wet mixing and irradiation | 368.2 | 355.1 | 723.3 | +1 |
Sample 5 | Adsorption and Calcination | 368.2 | 355.4 | 723.6 | +1 |
Sample 6 | Sonication/citrate | 368.2 | 356.7 | 724.9 | +1 metallic |
Sample 7 | Sonication/citrate | 368.2 | 357.5 | 725.7 | metallic |
Sample 8 | Sonication/NaBH4 | 368.2 | 357.5 | 725.7 | metallic |
Sample 9 | Sonication/NaBH4 | 368.2 | 357.2 | 725.4 | +1/metallic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolli, E.; Kaciulis, S.; Mezzi, A.; Ambrogi, V.; Nocchetti, M.; Latterini, L.; Di Michele, A.; Padeletti, G. Hydroxyapatite Functionalized Calcium Carbonate Composites with Ag Nanoparticles: An Integrated Characterization Study. Nanomaterials 2021, 11, 2263. https://doi.org/10.3390/nano11092263
Bolli E, Kaciulis S, Mezzi A, Ambrogi V, Nocchetti M, Latterini L, Di Michele A, Padeletti G. Hydroxyapatite Functionalized Calcium Carbonate Composites with Ag Nanoparticles: An Integrated Characterization Study. Nanomaterials. 2021; 11(9):2263. https://doi.org/10.3390/nano11092263
Chicago/Turabian StyleBolli, Eleonora, Saulius Kaciulis, Alessio Mezzi, Valeria Ambrogi, Morena Nocchetti, Loredana Latterini, Alessandro Di Michele, and Giuseppina Padeletti. 2021. "Hydroxyapatite Functionalized Calcium Carbonate Composites with Ag Nanoparticles: An Integrated Characterization Study" Nanomaterials 11, no. 9: 2263. https://doi.org/10.3390/nano11092263
APA StyleBolli, E., Kaciulis, S., Mezzi, A., Ambrogi, V., Nocchetti, M., Latterini, L., Di Michele, A., & Padeletti, G. (2021). Hydroxyapatite Functionalized Calcium Carbonate Composites with Ag Nanoparticles: An Integrated Characterization Study. Nanomaterials, 11(9), 2263. https://doi.org/10.3390/nano11092263