Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carbon Nanotube Field-Effect Transistor Fabrication
2.2. Aptamer Functionalisation
2.3. Electrical Characterisation
3. Results
3.1. Characteristics of CNT FET Aptasensors
3.2. Sensing Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hong, P.; Li, W.; Li, J. Applications of Aptasensors in Clinical Diagnostics. Sensors 2012, 12, 1181–1193. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.Y.; Alsager, O.A.; Wood, C.S.; Hodgkiss, J.M.; Plank, N.O.V. Carbon Nanotube Field Effect Transistor Aptasensors for Estrogen Detection in Liquids. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2015, 33, 06F904. [Google Scholar] [CrossRef]
- Lee, J.; Jo, M.; Kim, T.H.; Ahn, J.Y.; Lee, D.K.; Kim, S.; Hong, S. Aptamer Sandwich-Based Carbon Nanotube Sensors for Single-Carbon-Atomic- Resolution Detection of Non-Polar Small Molecular Species. Lab Chip 2011, 11, 52–56. [Google Scholar] [CrossRef] [PubMed]
- So, H.M.; Won, K.; Kim, Y.H.; Kim, B.K.; Ryu, B.H.; Na, P.S.; Kim, H.; Lee, J.O. Single-Walled Carbon Nanotube Biosensors Using Aptamers as Molecular Recognition Elements. J. Am. Chem. Soc. 2005, 127, 11906–11907. [Google Scholar] [CrossRef] [PubMed]
- Maehashi, K.; Katsura, T.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors. Anal. Chem. 2007, 79, 782–787. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Alsager, O.A.; Zhu, B.; Travas-Sejdic, J.; Hodgkiss, J.M.; Plank, N.O.V. Electrostatic Gating in Carbon Nanotube Aptasensors. Nanoscale 2016, 8, 13659–13668. [Google Scholar] [CrossRef]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-Based Biosensors. TrAC-Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Khan, N.I.; Song, E. Lab-on-a-Chip Systems for Aptamer-Based Biosensing. Micromachines 2020, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Stern, E.; Wagner, R.; Sigworth, F.J.; Breaker, R.; Fahmy, T.M.; Reed, M.A. Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Lett. 2007, 7, 3405–3409. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.M.; Lee, A.A.; Perkin, S. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. J. Phys. Chem. Lett. 2016, 7, 2157–2163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tello, A.; Cao, R.; Marchant, M.J.; Gomez, H. Conformational Changes of Enzymes and Aptamers Immobilized on Electrodes. Bioconjug. Chem. 2016, 27, 2581–2591. [Google Scholar] [CrossRef] [PubMed]
- Verdian-Doghaei, A.; Housaindokht, M.R.; Bozorgmehr, M.R.; Abnous, K. Conformational Switch of Insulin-Binding Aptamer into G-Quadruplex Induced by K+ and Na+: An Experimental and Theoretical Approach. J. Biomol. Struct. Dyn. 2015, 33, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Thanihaichelvan, M.; Browning, L.A.; Dierkes, M.P.; Reyes, R.M.; Kralicek, A.V.; Carraher, C.; Marlow, C.A.; Plank, N.O.V. Metallic-Semiconducting Junctions Create Sensing Hot-Spots in Carbon Nanotube FET Aptasensors near Percolation. Biosens. Bioelectron. 2018, 130, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.J.; Morrison, R.R.; Teng, B.; Pelleg, A. Adenosine Receptors and the Heart: Role in Regulation of Coronary Blood Flow and Cardiac Electrophysiology. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 193, pp. 161–188. [Google Scholar]
- Leone, R.D.; Emens, L.A. Targeting Adenosine for Cancer Immunotherapy. J. Immunother. Cancer 2018, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, T.W.; Ceruti, S.; Abbracchio, M.P. Adenosine Receptors and Neurological Disease: Neuroprotection and Neurodegeneration. Handb. Exp. Pharmacol. 2009, 193, 535–587. [Google Scholar]
- Mujoomdar, M.; Hoskin, D.; Blay, J. Adenosine Stimulation of the Proliferation of Colorectal Carcinoma Cell Lines: Roles of Cell Density and Adenosine Metabolism. Biochem. Pharmacol. 2003, 66, 1737–1747. [Google Scholar] [CrossRef]
- Conti, C.R. Adenosine-Clinical Pharmacology and Applications. Clin. Cardiol. 1991, 14, 91–93. [Google Scholar]
- Löfgren, L.; Pehrsson, S.; Hägglund, G.; Tjellström, H.; Nylander, S. Accurate Measurement of Endogenous Adenosine in Human Blood. PLoS ONE 2018, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gaubert, M.; Marlinge, M.; Kerbaul, F.; Resseguier, N.; Laine, M.; Cautella, J.; Cordier, C.; Colomb, B.; Kipson, N.; Thuny, F.; et al. Adenosine Plasma Level and A2A Receptor Expression in Patients With Cardiogenic Shock. Crit. Care Med. 2018, 46, e874–e880. [Google Scholar] [CrossRef]
- Yousefi, S.; Saraji, M. Optical Aptasensor Based on Silver Nanoparticles for the Colorimetric Detection of Adenosine. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2019, 213, 1–5. [Google Scholar] [CrossRef]
- Xu, L.; Shen, X.; Li, B.; Zhu, C.; Zhou, X. G-Quadruplex Based Exo III-Assisted Signal Amplification Aptasensor for the Colorimetric Detection of Adenosine. Anal. Chim. Acta 2017, 980, 58–64. [Google Scholar] [CrossRef]
- You, J.; You, Z.; Xu, X.; Ji, J.; Lu, T.; Xia, Y.; Wang, L.; Zhang, L.; Du, S. A Split Aptamer-Labeled Ratiometric Fluorescent Biosensor for Specific Detection of Adenosine in Human Urine. Microchim. Acta 2019, 186, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.K.; Kim, H.Y.; Baek, S.; Park, H.G. A New S-Adenosylhomocysteine Hydrolase-Linked Method for Adenosine Detection Based on DNA-Templated Fluorescent Cu/Ag Nanoclusters. Biosens. Bioelectron. 2017, 93, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, H.; Li, C.; Zhao, Y.; Yu, X.; Luo, X. Label-Free Electrochemical Aptasensor for Adenosine Detection Based on Cascade Signal Amplification Strategy. Biosens. Bioelectron. 2017, 90, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Shahdost-fard, F.; Salimi, A.; Sharifi, E.; Korani, A. Fabrication of a Highly Sensitive Adenosine Aptasensor Based on Covalent Attachment of Aptamer onto Chitosan-Carbon Nanotubes-Ionic Liquid Nanocomposite. Biosens. Bioelectron. 2013, 48, 100–107. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, L.; Xu, X.; Liu, S. Quantitative Detection of Potassium Ions and Adenosine Triphosphate via a Nanochannel-Based Electrochemical Platform Coupled with G-Quadruplex Aptamers. Anal. Chem. 2014, 86, 10741–10748. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew. Chem.-Int. Ed. 2005, 45, 90–94. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Cao, X.; Wang, L.; Li, D.; Song, S.; Ye, B.; Fan, C. Adenosine Detection by Using Gold Nanoparticles and Designed Aptamer Sequences. Analyst 2009, 134, 1355–1360. [Google Scholar] [CrossRef]
- Plank, N.O.V.; Ishida, M.; Cheung, R. Positioning of Carbon Nanotubes Using Soft-Lithography for Electronics Applications. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2005, 23, 3178. [Google Scholar] [CrossRef]
- Murugathas, T.; Zheng, H.Y.; Colbert, D.; Kralicek, A.V.; Carraher, C.; Plank, N.O.V. Biosensing with Insect Odorant Receptor Nanodiscs and Carbon Nanotube Field-Effect Transistors. ACS Appl. Mater. Interfaces 2019, 11, 9530–9538. [Google Scholar] [CrossRef]
- Chen, R.J.; Bangsaruntip, S.; Drouvalakis, K.A.; Kam, N.W.S.; Shim, M.; Li, Y.; Kim, W.; Utz, P.J.; Dai, H. Noncovalent Functionalization of Carbon Nanotubes for Highly Specific Electronic Biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984–4989. [Google Scholar] [CrossRef] [Green Version]
- Thanihaichelvan, M.; Browning, L.A.; Dierkes, M.P.; Reyes, R.M.; Kralicek, A.V.; Carraher, C.; Marlow, C.A.; Plank, N.O.V. Data on Liquid Gated CNT Network FETs on Flexible Substrates. Data Br. 2018, 21, 276–283. [Google Scholar] [CrossRef]
- Groß, A.; Richter, M.; Kubinski, D.J.; Visser, J.H.; Moos, R. The Effect of the Thickness of the Sensitive Layer on the Performance of the Accumulating NOx Sensor. Sensors 2012, 12, 12329–12346. [Google Scholar] [CrossRef]
- Lerner, M.B.; D’Souza, J.; Pazina, T.; Dailey, J.; Goldsmith, B.R.; Robinson, M.K.; Johnson, A.T.C. Hybrids of a Genetically Engineered Antibody and a Carbon Nanotube Transistor for Detection of Prostate Cancer Biomarkers. ACS Nano 2012, 6, 5143–5149. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.N. The Hill Equation Revisited: Uses and Misuses. FASEB 1997, 11, 835–841. [Google Scholar] [CrossRef]
- Ha, S.H.; Ferrell, J.E. Thresholds and Ultrasensitivity from Negative Cooperativity. Science 2016, 352, 990–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.; Wang, Z.; Li, Y.; Zhu, Y.; Wang, X.; De Moraes, C.G.; Pan, Y.; Zhao, X.; Lin, Q. Measurement of Cytokine Biomarkers Using an Aptamer-Based Affinity Graphene Nanosensor on a Flexible Substrate toward Wearable Applications. Nanoscale 2018, 10, 21681–21688. [Google Scholar] [CrossRef]
- Khan, N.I.; Mousazadehkasin, M.; Ghosh, S.; Tsavalas, J.G.; Song, E. An Integrated Microfluidic Platform for Selective and Real-Time Detection of Thrombin Biomarkers Using a Graphene FET. Analyst 2020, 145, 4494–4503. [Google Scholar] [CrossRef]
- Rajesh; Sharma, V.; Puri, N.K.; Mulchandani, A.; Kotnala, R.K. High Performance Dendrimer Functionalized Single-Walled Carbon Nanotubes Field Effect Transistor Biosensor for Protein Detection. Appl. Phys. Lett. 2016, 109, 243504. [Google Scholar] [CrossRef]
- Huizenga, D.E.; Szostak, J.W. A DNA Aptamer That Binds Adenosine and ATP. Biochemistry 1995, 34, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Dutta, A.; Huang, H. A Selective Adenosine Sensor Derived from a Triplex DNA Aptamer. Anal. Bioanal. Chem. 2011, 400, 3035–3040. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, I.Y.; Choi, M.S.; Wu, Q. Label-Free Electrochemical Detection of Adenosine Based on Electron Transfer from Guanine Bases in an Adenosine-Sensitive Aptamer. Chem. Commun. 2009, 31, 4747–4749. [Google Scholar] [CrossRef] [PubMed]
- Le, H.N.; Jiang, X.Q.; Zhang, M.; Ye, B.C. Label-Free Fluorescent Assay of ATP Based on an Aptamer-Assisted Light-up of Hoechst Dyes. Anal. Methods 2014, 6, 2028–2030. [Google Scholar] [CrossRef]
- Sorgenfrei, S.; Chiu, C.Y.; Johnston, M.; Nuckolls, C.; Shepard, K.L. Debye Screening in Single-Molecule Carbon Nanotube Field-Effect Sensors. Nano Lett. 2011, 11, 3739–3743. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, L.; Ma, H.; Zhou, T.; Li, X. Aptamer Biosensor for Label-Free Impedance Spectroscopy Detection of Potassium Ion Based on DNA G-Quadruplex Conformation. Biosens. Bioelectron. 2013, 48, 108–112. [Google Scholar] [CrossRef]
- Shim, J.; Gu, L.Q. Single-Molecule Investigation of G-Quadruplex Using a Nanopore Sensor. Methods 2012, 57, 40–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacios, M.; Martin-Fernandez, I.; Borrisé, X.; Del Valle, M.; Bartrolí, J.; Lora-Tamayo, E.; Godignon, P.; Pérez-Murano, F.; Esplandiu, M.J. Real Time Protein Recognition in a Liquid-Gated Carbon Nanotube Field-Effect Transistor Modified with Aptamers. Nanoscale 2012, 4, 5917–5923. [Google Scholar] [CrossRef]
- Ida, J.; Chan, S.K.; Glökler, J.; Lim, Y.Y.; Choong, Y.S.; Lim, T.S. G-Quadruplexes as an Alternative Recognition Element in Disease-Related Target Sensing. Molecules 2019, 24, 1079. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Feng, J.; Tan, Z.; Wang, H. Electrochemical Impedance Spectroscopy Aptasensor for Ultrasensitive Detection of Adenosine with Dual Backfillers. Biosens. Bioelectron. 2014, 60, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Das, B.K.; Tlili, C.; Badhulika, S.; Cella, L.N.; Chen, W.; Mulchandani, A. Single-Walled Carbon Nanotubes Chemiresistor Aptasensors for Small Molecules: Picomolar Level Detection of Adenosine Triphosphate. Chem. Commun. 2011, 47, 3793–3795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Adenosine Aptamer | Sequence |
---|---|
27-mer | 5′-NH2-ACCTGGGGGAGTATTGCGGAGGAAGGT-3′ |
35-mer | 5′-NH2-AAAAAAAAAACCTGGGGGAGTATTGCGGAGGAAGG-3′ |
Aptamer Sequence | A | Kd | N | Z |
---|---|---|---|---|
35-mer | 0.09 ± 0.015 | (1.2 ± 1.08) × 10−9 M | 0.2 ± 0.03 | 0.97 ± 0.01 |
27-mer | 0.07 ± 0.02 | (1.6 ± 1.4) × 10−7 M | 0.6 ± 0.08 | 0.96 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.P.T.; Murugathas, T.; Plank, N.O.V. Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors. Nanomaterials 2021, 11, 2280. https://doi.org/10.3390/nano11092280
Nguyen HPT, Murugathas T, Plank NOV. Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors. Nanomaterials. 2021; 11(9):2280. https://doi.org/10.3390/nano11092280
Chicago/Turabian StyleNguyen, Hong Phan T., Thanihaichelvan Murugathas, and Natalie O. V. Plank. 2021. "Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors" Nanomaterials 11, no. 9: 2280. https://doi.org/10.3390/nano11092280
APA StyleNguyen, H. P. T., Murugathas, T., & Plank, N. O. V. (2021). Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors. Nanomaterials, 11(9), 2280. https://doi.org/10.3390/nano11092280