The Thermal Stability of Janus Monolayers SnXY (X, Y = O, S, Se): Ab-Initio Molecular Dynamics and Beyond
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussions
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [Green Version]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.-B.; Xiao, D.; Yao, Y.; Xu, X.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663. [Google Scholar] [CrossRef] [Green Version]
- Kooi, B.J.; Noheda, B. Ferroelectric chalcogenides–materials at the edge. Science 2016, 353, 221–222. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Chen, Z.; Yu, X.-F.; Zhou, Z.-K.; Li, J. Recent Advances in Quantum Effects of 2D Materials. Adv. Quantum Technol. 2019, 2, 1800111. [Google Scholar] [CrossRef]
- Lu, A.-Y.; Zhu, H.; Xiao, J.; Chuu, C.-P.; Han, Y.; Chiu, M.-H.; Cheng, C.-C.; Yang, C.-W.; Wei, K.-H.; Yang, Y.; et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, T.; Jia, F.; Zhao, G.; Wu, J.; Stroppa, A.; Ren, W. Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers. Phys. Rev. B 2018, 97, 235404. [Google Scholar] [CrossRef]
- Guo, S.-D.; Guo, X.-S.; Liu, Z.-Y.; Quan, Y.-N. Large piezoelectric coefficients combined with high electron mobilities in Janus monolayer XTeI (X = Sb and Bi): A first-principles study. J. Appl. Phys. 2020, 127, 064302. [Google Scholar] [CrossRef] [Green Version]
- Ju, L.; Bie, M.; Tang, X.; Shang, J.; Kou, L. Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 29335–29343. [Google Scholar] [CrossRef]
- Bekaert, J.; Khestanova, E.; Hopkinson, D.G.; Birkbeck, J.; Clark, N.; Zhu, M.; Bandurin, D.A.; Gorbachev, R.; Fairclough, S.; Zou, Y.; et al. Enhanced Superconductivity in Few-Layer TaS2 due to Healing by Oxygenation. Nano Lett. 2020, 20, 3808–3818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Z.; Ni, S. Predicted 2D ferromagnetic Janus VSeTe monolayer with high Curie temperature, large valley polarization and magnetic crystal anisotropy. Nanoscale 2020, 12, 22735–22742. [Google Scholar] [CrossRef]
- Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.M.; Tongay, S.; Sahin, H. Quantum properties and applications of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 2020, 7, 011311. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Z. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides. J. Phys. Condens. Matter 2018, 30, 215301. [Google Scholar] [CrossRef]
- Zhang, C.; Nie, Y.; Sanvito, S.; Du, A. First-Principles Prediction of a Room-Temperature Ferromagnetic Janus VSSe Monolayer with Piezoelectricity, Ferroelasticity, and Large Valley Polarization. Nano Lett. 2019, 19, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Ma, Y.; Huang, B.; Dai, Y. Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A 2019, 7, 603–610. [Google Scholar] [CrossRef]
- Sant, R.; Gay, M.; Marty, A.; Lisi, S.; Harrabi, R.; Vergnaud, C.; Dau, M.T.; Weng, X.; Coraux, J.; Gauthier, N.; et al. Synthesis of epitaxial monolayer Janus SPtSe. NPJ 2D Mater. Appl. 2020, 4, 41. [Google Scholar] [CrossRef]
- Riis-Jensen, A.C.; Deilmann, T.; Olsen, T.; Thygesen, K.S. Classifying the Electronic and Optical Properties of Janus Monolayers. ACS Nano 2019, 13, 13354–13364. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, Y.; Cai, Y.; Wu, Y.; Chen, Y.; Yan, X.; Shen, L. Intrinsic skyrmions in monolayer Janus magnets. Phys. Rev. B 2020, 101, 094420. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.T.; Tuan, V.V.; Nguyen, C.V.; Phuc, H.V.; Tong, H.D.; Nguyen, S.-T.; Hieu, N.N. Electronic and optical properties of a Janus SnSSe monolayer: Effects of strain and electric field. Phys. Chem. Chem. Phys. 2020, 22, 11637–11643. [Google Scholar] [CrossRef]
- Robin Chang, Y.H.; Yoon, T.L.; Yeoh, K.H.; Lim, T.L. Integrated SnSSe bulk and monolayer as industrial waste heat thermoelectric materials. Int. J. Energy Res. 2021, 45, 2085–2099. [Google Scholar] [CrossRef]
- Alam, M.; Waheed, H.S.; Ullah, H.; Iqbal, M.W.; Shin, Y.-H.; Khan, M.J.I.; Elsaeedy, H.I.; Neffati, R. Optoelectronics properties of Janus SnSSe monolayer for solar cells applications. Phys. B Condens. Matter 2022, 625, 413487. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, Y.; Sun, L.; Li, M.; Du, J.; Huang, Y. Stabilities, and electronic and piezoelectric properties of two-dimensional tin dichalcogenide derived Janus monolayers. J. Mater. Chem. C 2019, 7, 13203–13210. [Google Scholar] [CrossRef]
- Kahraman, Z.; Kandemir, A.; Yagmurcukardes, M.; Sahin, H. Single-Layer Janus-Type Platinum Dichalcogenides and Their Heterostructures. J. Phys. Chem. C 2019, 123, 4549–4557. [Google Scholar] [CrossRef]
- Xiao, W.-Z.; Xu, L.; Xiao, G.; Wang, L.-L.; Dai, X.-Y. Two-dimensional hexagonal chromium chalco-halides with large vertical piezoelectricity, high-temperature ferromagnetism, and high magnetic anisotropy. Phys. Chem. Chem. Phys. 2020, 22, 14503–14513. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-F.; Shen, Y.-H.; Hu, H.; Tong, W.-Y.; Duan, C.-G. Combined piezoelectricity and ferrovalley properties in Janus monolayer VClBr. Phys. Rev. B 2021, 103, 115124. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab-initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal−amorphous- semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Tuckerman, M.E. Ab-initio molecular dynamics: Basic concepts, current trends and novel applications. J. Phys. Condens. Matter 2002, 14, R1297. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Liu, P.-F.; Zhang, J.; Zhang, P.; Zhou, W.-X.; Xie, G.; Wang, B.-T. Monolayer SnP3: An excellent p-type thermoelectric material. Nanoscale 2019, 11, 19923–19932. [Google Scholar] [CrossRef]
- Zhu, X.-L.; Hou, C.-H.; Zhang, P.; Liu, P.-F.; Xie, G.; Wang, B.-T. High Thermoelectric Performance of New Two-Dimensional IV−VI Compounds: A First-Principles Study. J. Phys. Chem. C 2020, 124, 1812–1819. [Google Scholar] [CrossRef]
- Vu, T.V.; Nguyen, C.V.; Phuc, H.V.; Lavrentyev, A.A.; Khyzhun, O.Y.; Hieu, N.V.; Obeid, M.M.; Rai, D.P.; Tong, H.D.; Hieu, N.N. Theoretical prediction of electronic, transport, optical, and thermoelectric properties of Janus monolayers In2XO (X = S, Se, Te). Phys. Rev. B 2021, 103, 085422. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Chadi, D.J.; Cohen, M.L. Special Points in the Brillouin Zone. Phys. Rev. B 1973, 8, 5747–5753. [Google Scholar] [CrossRef]
- Tao, W.-L.; Lan, J.-Q.; Hu, C.-E.; Cheng, Y.; Zhu, J.; Geng, H.-Y. Thermoelectric properties of Janus MXY (M = Pd, Pt; X, Y = S, Se, Te) transition-metal dichalcogenide monolayers from first principles. J. Appl. Phys. 2020, 127, 035101. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D.; Chen, Y.; Wang, H.; Wang, H.; Ni, Y. The thermoelectric properties of α-XP (X = Sb and Bi) monolayers from first-principles calculations. Phys. Chem. Chem. Phys. 2021, 23, 24598–24606. [Google Scholar] [CrossRef] [PubMed]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Carrete, J.; Katcho, N.A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Zhou, J.; Meng, L.; He, J.; Liu, C.; Yan, X. Band Structures Transformation in Two-Faced Janus Monolayer SnXY(X, Y = O, S, Se, and Te). J. Electron. Mater. 2021, 50, 2504–2509. [Google Scholar] [CrossRef]
- Goldoni, G.; Peeters, F.M. Stability, dynamical properties, and melting of a classical bilayer Wigner crystal. Phys. Rev. B 1996, 53, 4591–4603. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Jing, Y.; Zhang, X. Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Phys. Rev. B 2015, 91, 155408. [Google Scholar] [CrossRef]
- Savin, A.; Nesper, R.; Wengert, S.; Fӓssler, T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. 1997, 36, 1808–1832. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Hou, J.; Du, A.; Chen, Z. Dirac State in the FeB2 Monolayer with Graphene-Like Boron Sheet. Nano Lett. 2016, 16, 6124–6129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, W.; Wu, L.; Ke, X.; Yang, J.; Zhang, W. Diverse lattice dynamics in ternary Cu-Sb-Se compounds. Sci. Rep. 2015, 5, 13643. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yao, W.; Yan, Y.; Qiu, W.; Guo, L.; Lu, X.; Uher, C.; Han, X.; Wang, G.; Yang, T.; et al. Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3. NPG Asia Mater 2017, 9, e387. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Jia, T.; Zhang, J.; Wang, Y.; Zhang, Y. Dual effects of lone-pair electrons and rattling atoms in CuBiS2 on its ultralow thermal conductivity. Phys. Rev. B 2017, 96, 235205. [Google Scholar] [CrossRef]
- Li, M.K.; Sheng, C.Y.; Hu, R.; Han, S.H.; Yuan, H.M.; Liu, H.J. Effects of van der Waals interactions on the phonon transport properties of tetradymite compounds. New J. Phys. 2021, 23, 083002. [Google Scholar] [CrossRef]
- Zhang, Y. A comparison study of the structural, electronic, elastic, dielectric and dynamical properties of Zr-based monolayer dioxides (ZrO2) and dichalcogenides (ZrX2; X = S, Se or Te) as well as their Janus structures (ZrXY.; X, Y = O, S, Se or Te, Y ≠ X). Phys. E Low-Dimens. Syst. Nanostruct. 2021, 134, 114855. [Google Scholar] [CrossRef]
- Touski, S.B.; Ghobadi, N. Structural, electrical, and Rashba properties of monolayer Janus Si2XY (X, Y = P, As, Sb, and Bi). Phys. Rev. B 2021, 103, 165404. [Google Scholar] [CrossRef]
- Bera, J.; Betal, A.; Sahu, S. Spin orbit coupling induced enhancement of thermoelectric performance of HfX2 (X = S, Se) and its Janus monolayer. J. Alloy. Compd. 2021, 872, 159704. [Google Scholar] [CrossRef]
Lattice Parameters | SnOS | SnOSe | SnSSe |
---|---|---|---|
3.46 | 3.54 | 3.78 | |
2.48 | 2.60 | 3.07 | |
2.21 | 2.24 | / | |
2.52 | / | 2.63 | |
/ | 2.65 | 2.72 | |
0.31 | 0.41 | 0.09 |
Temperature | SnOS | SnOSe | SnSSe |
---|---|---|---|
100 K | 0.02 | 0.07 | 0.01 |
200 K | 0.04 | 0.15 | 0.02 |
300 K | 0.06 | 0.22 | 0.03 |
400 K | 0.08 | 0.29 | 0.04 |
525 K | 0.11 | 0.38 | 0.05 |
600 K | 0.13 | 0.44 | 0.06 |
700 K | 0.15 | 0.51 | 0.07 |
825 K | 0.17 | 0.60 | 0.08 |
900 K | 0.19 | 0.66 | 0.09 |
Temperature | ZrSTe | Si2PSb | SnO2 | SnS2 | SnSe2 | HfSe2 |
---|---|---|---|---|---|---|
100 K | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.01 |
225 K | 0.09 | 0.06 | 0.04 | 0.03 | 0.04 | 0.03 |
300 K | 0.12 | 0.08 | 0.06 | 0.05 | 0.07 | 0.04 |
350 K | 0.14 | 0.09 | 0.07 | 0.05 | 0.08 | 0.05 |
425 K | 0.17 | 0.11 | 0.08 | 0.06 | 0.09 | 0.06 |
450 K | 0.18 | 0.12 | 0.09 | 0.07 | 0.10 | 0.07 |
525 K | 0.21 | 0.14 | 0.11 | 0.08 | 0.11 | 0.08 |
600 K | 0.24 | 0.16 | 0.12 | 0.09 | 0.13 | 0.09 |
700 K | 0.28 | 0.19 | 0.14 | 0.11 | 0.15 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Han, S.; Hu, R.; Yuan, H.; Jiao, W.; Liu, H. The Thermal Stability of Janus Monolayers SnXY (X, Y = O, S, Se): Ab-Initio Molecular Dynamics and Beyond. Nanomaterials 2022, 12, 101. https://doi.org/10.3390/nano12010101
Luo Y, Han S, Hu R, Yuan H, Jiao W, Liu H. The Thermal Stability of Janus Monolayers SnXY (X, Y = O, S, Se): Ab-Initio Molecular Dynamics and Beyond. Nanomaterials. 2022; 12(1):101. https://doi.org/10.3390/nano12010101
Chicago/Turabian StyleLuo, Yufeng, Shihao Han, Rui Hu, Hongmei Yuan, Wenyan Jiao, and Huijun Liu. 2022. "The Thermal Stability of Janus Monolayers SnXY (X, Y = O, S, Se): Ab-Initio Molecular Dynamics and Beyond" Nanomaterials 12, no. 1: 101. https://doi.org/10.3390/nano12010101
APA StyleLuo, Y., Han, S., Hu, R., Yuan, H., Jiao, W., & Liu, H. (2022). The Thermal Stability of Janus Monolayers SnXY (X, Y = O, S, Se): Ab-Initio Molecular Dynamics and Beyond. Nanomaterials, 12(1), 101. https://doi.org/10.3390/nano12010101