Investigations of 2D PtS2’s Saturable Absorption Characteristic and Its Optimization to OPO’s Operation
Abstract
:1. Introduction
2. Material Fabrication and Characterization in Experiment
3. Theoretical Evaluation of IOPO with 6.2 nm-Thick PtS2’s Saturable Absorption Characteristic
3.1. Gaussian Rate Equations of IOPO
3.2. PtS2 SA Parameters Derivation by Inhomogeneously Broadening Mechanism
4. Optimized Experiment of Q-Switched IOPO Based on PtS2 SA
4.1. Experimental Setup
4.2. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 1–15. [Google Scholar] [CrossRef]
- Ren, K.; Zhu, Z.; Wang, K.; Huo, W.; Cui, Z. Stacking-Mediated Type-I/Type-II transition in two-dimensional MoTe2/PtS2 Heterostructure: A first-principles simulation. Crystals 2022, 12, 425. [Google Scholar] [CrossRef]
- Muhsen Almayyali, A.O.; Kadhim, B.B.; Jappor, H.R. Tunable electronic and optical properties of 2D PtS2/MoS2 van der Waals heterostructure. Physica E 2020, 118, 113866. [Google Scholar] [CrossRef]
- Yan, H.-J.; Li, Z.; Liu, S.-C.; Wang, X.; Zhang, X.; Xue, D.-J.; Hu, J.-S. Investigation of weak interlayer coupling in 2D layered GeS2 from theory to experiment. Nano Res. 2021, 15, 1013–1019. [Google Scholar] [CrossRef]
- Long, H.; Tang, C.Y.; Cheng, P.K.; Wang, X.Y.; Qarony, W.; Tsang, Y.H. Ultrafast laser pulses generation by using 2D layered PtS2 as a saturable absorber. J. Lightwave Technol. 2019, 37, 1174–1179. [Google Scholar] [CrossRef]
- Zhao, D.; Xie, S.; Wang, Y.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D.W. Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Adv. 2019, 9, 025225. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Gan, Y.; Quhe, R.; Lu, P. Strain dependent electronic and optical properties of PtS2 monolayer. Chem. Phys. Lett. 2018, 709, 65–70. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, X.; Su, G.; Yang, W.; Han, K.; Yu, X.; Wan, Y.; Wang, X.; Yang, P. Large-area uniform few-layer PtS2: Synthesis, structure and physical properties. Mater. Today Phys. 2021, 18, 100376. [Google Scholar] [CrossRef]
- Wang, X.; Long, H.; Qarony, W.; Tang, C.Y.; Yuan, H.; Tsang, Y.H. Fabrication of luminescent PtS2 quantum dots. J. Lumin. 2019, 211, 227–232. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, P.K.; Tang, C.Y.; Long, H.; Yuan, H.; Zeng, L.; Ma, S.; Qarony, W.; Tsang, Y.H. Laser Q-switching with PtS2 microflakes saturable absorber. Opt. Express 2018, 26, 13055–13060. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, W.; Chai, Y.; Li, H.; Tian, M.; Zhai, T. Few-Layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 2017, 27, 1701011. [Google Scholar] [CrossRef]
- Almayyali, A.O.M.; Kadhim, B.B.; Jappor, H.R. Stacking impact on the optical and electronic properties of two-dimensional MoSe2/PtS2 heterostructures formed by PtS2 and MoSe2 monolayers. Chem. Phys. 2020, 532, 1–7. [Google Scholar] [CrossRef]
- Ma, P.; Lin, W.; Zhang, H.; Xu, S.; Yang, Z. High-Power large-energy rectangular mode-locked Er-Doped fiber laser based on high-damage-threshold MoS2 saturable absorber. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, J.; Yu, P.; Hu, Z.; Lin, Z.; Lau, S.P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, P.; Wang, F.; Ye, J.; He, T.; Wu, F.; Peng, M.; Wu, P.; Chen, Y.; Zhong, F.; et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2019, 30, 1907945. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, X.; Cheng, L.; Li, S.; Wu, C.; Dong, Y.; Fu, Y.; Jin, G. Continuous-Wave intracavity multiple optical parametric oscillator using an aperiodically poled lithium niobate around 1.57 and 3.84 μm. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Myers, L.E.; Bosenberg, W.R. Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators. IEEE J. Quantum Electron. 1997, 33, 1663–1672. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, P.; Li, Y.; Zhang, Z. Continuous-wave, singly-resonant, intracavity optical parametric oscillator based on a single-mode-laser-diode-pumped Yb:KYW laser. Opt. Lett. 2018, 43, 2807–2810. [Google Scholar] [CrossRef]
- Debuisschert, T.; Raffy, J.; Pocholle, J.P.; Papuchon, M. Intracavity optical parametric oscillator: Study of the dynamics in pulsed regime. J. Opt. Soc. Am. B 1996, 13, 1569–1587. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, S.; Zhao, J.; Yang, K.; Li, G.; Li, D.; Li, T.; Qiao, W.; Wang, Y. Generation of low repetition rate sub-nanosecond pulses in doubly QML Nd:Lu0.5Y0.5VO4 and Nd:YVO4 lasers with EO and transmission SSA. Opt. Laser Technol. 2015, 69, 39–43. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Zhang, H.; Xia, W. Passively Q-switched 1.989μm all-solid-state laser based on a WTe2 saturable absorber. Appl. Opt. 2018, 57, 10239–10242. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Li, Y.; Yang, J.; Dou, X.; Xu, H.; Han, W.; Liu, J. Passively Q-switched Yb:KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber. Appl. Phys. B 2019, 125, 1–6. [Google Scholar] [CrossRef]
- Liu, F.Q.; Xia, H.R.; Pan, S.D.; Gao, W.L.; Ran, D.G.; Sun, S.Q.; Ling, Z.C.; Zhang, H.J.; Zhao, S.R.; Wang, J.Y. Passively Q-switched Nd:LuVO4 laser using Cr4+:YAG as saturable absorber. Opt. Laser Technol. 2007, 39, 1449–1453. [Google Scholar] [CrossRef]
- Wagner, W.G.; Lengyel, B.A. Evolution of the giant pulse in a laser. J. Appl. Phys. 1963, 34, 2040–2046. [Google Scholar] [CrossRef]
- Oshman, M.; Harris, S. Theory of optical parametric oscillation internal to the laser cavity. IEEE J. Quantum Electron. 1968, 5, 491–502. [Google Scholar] [CrossRef]
- Li, G.; Zhao, S.; Yang, K.; Wu, W. Pulse width reduction in diode-pumped Nd:GdVO4 laser with AO and GaAs double Q-switches. Jpn. J. Appl. Phys. 2005, 44, 3017–3021. [Google Scholar] [CrossRef]
- Yang, K.; Zhao, S.; Li, G.; Zhao, H. Compression of pulse duration in a laser-diode, end-pumped, double Q-switched laser. Appl. Opt. 2005, 44, 271–277. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, Z.; Wang, A.; Sun, D.; Chen, Y.; Yang, L.; Pang, J.; Li, H.; Zhou, W. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy 2019, 62, 338–347. [Google Scholar] [CrossRef]
- Kjekshus, A.; Grnvold, F.; Jrgensen, P.M.; Refn, S. High Temperature X-Ray Study of the Thermal Expansion of PtS2, PtSe2, PtTe2 and PdTe2. Acta Chem. Scand. 1959, 13, 1767–1774. [Google Scholar] [CrossRef]
- Miro, P.; Ghorbani-Asl, M.; Heine, T. Two dimensional materials beyond MoS2: Noble-transition-metal dichalcogenides. Angew. Chem. Int. Ed. Engl. 2014, 53, 3015–3018. [Google Scholar] [CrossRef]
- Wang, K.; Yang, K.; Zhang, X.; Zhao, S.; Luan, C.; Liu, C.; Wang, J.; Xu, X.; Xu, J. Passively Q-Switched Laser at 1.3 μm With Few-Layered MoS2 Saturable Absorber. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 71–75. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Li, G.; Yang, K.; Li, D.; An, J.; Li, M. Pulse Compression in Laser-Diode-Pumped Doubly Q-Switched intracavity optical parametric oscillator considering gaussian distribution of intracavity photon densities. Jpn. J. Appl. Phys. 2007, 46, 1505–1510. [Google Scholar] [CrossRef]
- Wang, J.; Pang, J.B.; Liu, S.P.; Zhang, H.K.; Tang, W.J.; Xia, W. Experimental and dynamical study of a dual Q-switched intracavity OPO based on few-layer MoSe2 SA. Opt. Express 2019, 27, 36474–36486. [Google Scholar] [CrossRef] [PubMed]
- Friel, G.J.; Conroy, R.S.; Kemp, A.J.; Sinclair, B.D.; Ley, J.M. Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector. Appl. Phys. B 1998, 67, 267–270. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Yang, K.; Dong, L.; Li, G.; Li, D.; Li, M.; An, J.; Qiao, W. Pulse compression and threshold decrease in highrepetition-rate doubly Q-switched intracavity optical parametric oscillator. J. Opt. Soc. Am. B 2007, 24, 2521–2525. [Google Scholar] [CrossRef]
- Qiao, J.P.; Zhao, J.; Yang, K.J.; Zhao, S.Z.; Li, G.Q.; Li, D.C.; Li, T.; Qiao, W.C.; Chu, H. Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable abosorber. Opt. Mater. 2015, 50, 234–237. [Google Scholar] [CrossRef]
- Qiao, J.P.; Zhao, S.Z.; Yang, K.J.; Zhao, J.; Li, G.Q.; Li, D.C.; Li, T.; Qiao, W.C. Hybrid Q-switched laser with MoS2 saturable absorber and AOM driven sub-nanosecond KTP-OPO. Opt. Express 2017, 25, 4227–4238. [Google Scholar] [CrossRef]
- Qiao, J.P.; Zhao, S.Z.; Yang, K.J.; Zhao, J.; Li, G.Q.; Li, D.C.; Li, T.; Qiao, W.C.; Wang, Y.G. Sub-nanosecond KTP-OPO pumped by a hybrid Q-switched laser with WS2 saturable absorber and AOM. Opt. Mater. Express 2017, 7, 3998–4009. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
σg | 6.4298 × 10−19 cm−2 |
σe | 2.5927 × 10−19 cm−2 |
τy | 1.043 ms |
ly | 6.2 nm |
ny0 | 5.64 × 1024 cm−3 |
Q-Switching Method | Nonlinear Medium | Max Pump Power (808 nm) | Threshold Value (1570 nm) | Peak Power (1570 nm) | Conversion Efficiency at Max Pump Power (808→1570 nm) | Ref |
---|---|---|---|---|---|---|
AOM + Cr4+:YAG | KTP | 6.3 W | 5.1 W | 2.25 kW | 1.19% | [32] |
AOM + monolayer graphene SA | 11.7 W | 5.2 W | 7.9 kW | 0.81% | [36] | |
AOM + MoS2 SA | 10.2 W | 5.6 W | 21.6 kW | 1.79% | [37] | |
AOM + MoSe2 SA | 7.6 W | 6.0 W | 3.37 kW | 1.46% | [33] | |
AOM + WS2 SA | 10.2 W | 5.2 W | 28.7 kW | 2.28% | [38] | |
AOM + PtS2 SA | 5.2 W | 3.6 W | 4.193 kW | 3.29% | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Wang, J.; Guo, H.; Jiang, K.; Tang, W.; Xia, W. Investigations of 2D PtS2’s Saturable Absorption Characteristic and Its Optimization to OPO’s Operation. Nanomaterials 2022, 12, 1670. https://doi.org/10.3390/nano12101670
Hu X, Wang J, Guo H, Jiang K, Tang W, Xia W. Investigations of 2D PtS2’s Saturable Absorption Characteristic and Its Optimization to OPO’s Operation. Nanomaterials. 2022; 12(10):1670. https://doi.org/10.3390/nano12101670
Chicago/Turabian StyleHu, Xinyu, Jing Wang, Heze Guo, Kai Jiang, Wenjing Tang, and Wei Xia. 2022. "Investigations of 2D PtS2’s Saturable Absorption Characteristic and Its Optimization to OPO’s Operation" Nanomaterials 12, no. 10: 1670. https://doi.org/10.3390/nano12101670
APA StyleHu, X., Wang, J., Guo, H., Jiang, K., Tang, W., & Xia, W. (2022). Investigations of 2D PtS2’s Saturable Absorption Characteristic and Its Optimization to OPO’s Operation. Nanomaterials, 12(10), 1670. https://doi.org/10.3390/nano12101670