Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles
Abstract
:1. Introduction
2. Reproductive Toxicity In Vitro Studies
3. Reproductive Toxicity In Vivo Studies
3.1. Experiments with Nonmammal Species
3.2. Experiments with Mammals
4. Developmental Carbon Nanotoxicity
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choudhary, N.; Hwang, S.; Choi, W. Carbon Nanomaterials: A Review. In Handbook of Nanomaterials Properties; Springer: Berlin/Heidelberg, Germany, 2014; pp. 709–769. [Google Scholar] [CrossRef]
- Zielińska, A.; Costa, B.; Ferreira, M.V.; Miguéis, D.; Louros, J.M.S.; Durazzo, A.; Lucarini, M.; Eder, P.; Chaud, M.V.; Morsink, M.; et al. Nanotoxicology and nanosafety: Safety-by-design and testing at a glance. Int. J. Environ. Res. Public Health 2020, 17, 4657. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N. New insights on unique features and role of nanostructured materials in cosmetics. Cosmetics 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.M.; Roy, A.; Wahab, M.; Ahmed, M.; Othman-Qadir, G.; Elesawy, B.H.; Khandaker, M.U.; Islam, M.N.; Emran, T. Bin Applications of Nanomaterials in Agrifood and Pharmaceutical Industry. J. Nanomater. 2021, 2021, 1472096. [Google Scholar] [CrossRef]
- Park, S.-J.; Deshmukh, M.A.; Kang, B.-C.; Jeon, J.-Y.; Chen, C.; Ha, T.-J. Review—A Review of Advanced Electronic Applications Based on Carbon Nanomaterials. ECS J. Solid State Sci. Technol. 2020, 9, 071002. [Google Scholar] [CrossRef]
- Skákalová, V.; Kaiser, A.B. Graphene: Properties, Preparation, Characterisation and Applications; Woodhead Publishing: Duxford, UK, 2021; ISBN 9780081028490. [Google Scholar]
- Brisebois, P.P.; Siaj, M. Harvesting graphene oxide-years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C 2020, 8, 1517–1547. [Google Scholar] [CrossRef]
- Lawal, A.T. Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 2019, 141, 111384. [Google Scholar] [CrossRef]
- Vakhrushev, A.V.; Kodolov, V.I. Carbon Nanotubes and Nanoparticles: Current and Potential Applications; Vladimir, I., Haghi, A.K., Ameta, S.C., Eds.; Apply Academic Press Inc.: Oakville, ON, USA, 2019; Available online: https://www.routledge.com/Carbon-Nanotubes-and-Nanoparticles-Current-and-Potential-Applications/Vakhrushev-Kodolov-Haghi-Ameta/p/book/ (accessed on 11 May 2022).
- Rozhina, E.; Batasheva, S.; Miftakhova, R.; Yan, X.; Vikulina, A.; Volodkin, D.; Fakhrullin, R. Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide. Appl. Clay Sci. 2021, 205, 106041. [Google Scholar] [CrossRef]
- Semenov, K.N.; Charykov, N.A.; Keskinov, V.A.; Piartman, A.K.; Blokhin, A.A.; Kopyrin, A.A. Solubility of light fullerenes in organic solvents. J. Chem. Eng. Data 2010, 55, 13–36. [Google Scholar] [CrossRef]
- Shanbogh, P.P.; Sundaram, N.G. Fullerenes revisited: Materials chemistry and applications of C60 molecules. Resonance 2015, 20, 123–135. [Google Scholar] [CrossRef]
- Namadr, F.; Bahrami, F.; Bahari, Z.; Ghanbari, B.; Shahyad, S.; Mohammadi, M. Fullerene C60 Nanoparticles Decrease Liver Oxidative Stress through Increment of Liver Antioxidant Capacity in Streptozotocin-Induced Diabetes in Rats. React. Oxyg. Species 2020, 26, 70–80. [Google Scholar] [CrossRef]
- Grebowski, J.; Konopko, A.; Krokosz, A.; DiLabio, G.A.; Litwinienko, G. Antioxidant activity of highly hydroxylated fullerene C60 and its interactions with the analogue of α-tocopherol. Free Radic. Biol. Med. 2020, 160, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Dolmatov, V.Y.; Ozerin, A.N.; Kulakova, I.I.; Bochechka, O.O.; Lapchuk, N.M.; Myllymäki, V.; Vehanen, A. Detonation nanodiamonds: New aspects in the theory and practice of synthesis, properties and applications. Russ. Chem. Rev. 2020, 89, 1428–1462. [Google Scholar] [CrossRef]
- Qin, J.X.; Yang, X.G.; Lv, C.F.; Li, Y.Z.; Liu, K.K.; Zang, J.H.; Yang, X.; Dong, L.; Shan, C.X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021, 210, 110091. [Google Scholar] [CrossRef]
- Bacon, M.; Bradley, S.J.; Nann, T. Graphene quantum dots. Part. Part. Syst. Charact. 2014, 31, 415–428. [Google Scholar] [CrossRef]
- Chung, S.; Revia, R.A.; Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021, 33, 1904362. [Google Scholar] [CrossRef]
- Raja, I.S.; Song, S.-J.; Kang, M.S.; Lee, Y.B.; Kim, B.; Hong, S.W.; Jeong, S.J.; Lee, J.-C.; Han, D.-W. Toxicity of zero-and one-dimensional carbon nanomaterials. Nanomaterials 2019, 9, 1214. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 2019, 16, 18. [Google Scholar] [CrossRef]
- Meyer, J.D.; McDiarmid, M.; Diaz, J.H.; Baker, B.A.; Hieb, M. Reproductive and Developmental Hazard Management. Reprod. Dev. Hazard Manag. 2016, 58, e94–e102. [Google Scholar] [CrossRef] [Green Version]
- Alliance. Hazard Communication Information Sheet Reflecting the US OSHA Implementation of the Globally Harmonized System (GHS) of Classification and Labelling of Chemicals; SCHC-OSHA Alliance: Washington, DC, USA, 2017; pp. 1–4. Available online: https://www.osha.gov/dsg/hazcom/index.html (accessed on 4 February 2022).
- Tyl, R.W. Toxicity Testing, Reproductive. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 682–692. [Google Scholar] [CrossRef]
- Buerki-Thurnherr, T.; Schaepper, K.; Aengenheister, L.; Wick, P. Developmental Toxicity of Nanomaterials: Need for a Better Understanding of Indirect Effects. Chem. Res. Toxicol. 2018, 31, 641–642. [Google Scholar] [CrossRef] [Green Version]
- Dugershaw, B.B.; Aengenheister, L.; Hansen, S.S.K.; Hougaard, K.S.; Buerki-Thurnherr, T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part. Fibre Toxicol. 2020, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Yang, B.; Jiang, X.; Ma, X.; Lu, C.; Chen, C. Multiwalled carbon nanotubes inhibit steroidogenesis by disrupting steroidogenic acute regulatory protein expression and redox status. J. Nanosci. Nanotechnol. 2017, 17, 914–925. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Kim, J.H. Differential cytotoxicity of different sizes of graphene oxide nanoparticles in leydig (TM3) and sertoli (TM4) cells. Nanomaterials 2019, 9, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, X.; Xu, B.; Yao, M.; Mao, Z.; Zhang, Y.; Xu, G.; Tang, Q.; Wang, X.; Xia, Y. Graphene oxide quantum dots disrupt autophagic flux by inhibiting lysosome activity in GC-2 and TM4 cell lines. Toxicology 2016, 374, 10–17. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Q.; Liu, H.; Zhang, C.; Shao, W.; Gu, A. Toxicological assessment of multi-walled carbon nanotubes in vitro: Potential mitochondria effects on male reproductive cells. Oncotarget 2016, 7, 39270–39278. [Google Scholar] [CrossRef] [Green Version]
- Sanand, S.; Kumar, S.; Bara, N.; Kaul, G. Comparative evaluation of half-maximum inhibitory concentration and cytotoxicity of silver nanoparticles and multiwalled carbon nanotubes using buffalo bull spermatozoa as a cell model. Toxicol. Ind. Health 2018, 34, 640–652. [Google Scholar] [CrossRef]
- Bernabò, N.; Fontana, A.; Sanchez, M.R.; Valbonetti, L.; Capacchietti, G.; Zappacosta, R.; Greco, L.; Marchisio, M.; Lanuti, P.; Ercolino, E.; et al. Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model. Carbon 2018, 129, 428–437. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Liu, H.; Fu, J.; Zhen, L.; Li, Y.; Zhang, Y.; Zhang, Y. C60 Fullerenes Suppress Reactive Oxygen Species Toxicity Damage in Boar Sperm. Nano Micro Lett. 2019, 11, 104. [Google Scholar] [CrossRef] [Green Version]
- Asghar, W.; Shafiee, H.; Velasco, V.; Sah, V.R.; Guo, S.; El Assal, R.; Inci, F.; Rajagopalan, A.; Jahangir, M.; Anchan, R.M.; et al. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Sci. Rep. 2016, 6, 30270. [Google Scholar] [CrossRef]
- Aminzadeh, Z.; Jamalan, M.; Chupani, L.; Lenjannezhadian, H.; Ghaffari, M.A.; Aberomand, M.; Zeinali, M. In vitro reprotoxicity of carboxyl-functionalised single- and multi-walled carbon nanotubes on human spermatozoa. Andrologia 2017, 49, e12741. [Google Scholar] [CrossRef]
- Lin, Y.H.; Zhuang, S.X.; Wang, Y.L.; Lin, S.; Hong, Z.W.; Liu, Y.; Xu, L.; Li, F.P.; Xu, B.H.; Chen, M.H.; et al. The effects of graphene quantum dots on the maturation of mouse oocytes and development of offspring. J. Cell. Physiol. 2019, 234, 13820–13831. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.; Bai, X.; Chang, Y.; Li, J.; Qin, Y.; Chen, K.; Gu, W.; Xia, S.; Zhang, J.; Wang, Z.; et al. Effects of fullerenol nanoparticles on rat oocyte meiosis resumption. Int. J. Mol. Sci. 2018, 19, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrdanović, J.; Šolajić, S.; Bogdanović, V.; Stankov, K.; Bogdanović, G.; Djordjevic, A. Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat. Res.Genet. Toxicol. Environ. Mutagen. 2009, 680, 25–30. [Google Scholar] [CrossRef]
- Yadav, K.; Ali, S.A.; Mohanty, A.K.; Muthusamy, E.; Subaharan, K.; Kaul, G. MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation. J. Nanobiotechnol. 2021, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Batiuskaite, D.; Grinceviciute, N.; Snitka, V. Impact of graphene oxide on viability of Chinese hamster ovary and mouse hepatoma MH-22A cells. Toxicol. Vitr. 2015, 29, 1195–1200. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, J.; Yang, J.; Joo, S.W.; Hong, J.; Choi, J. Graphene oxide nano-bio interaction induces inhibition of spermatogenesis and disturbance of fatty acid metabolism in the nematode Caenorhabditis elegans. Toxicology 2018, 410, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Yang, J.S.; Park, K.; Oh, S.M.; Park, J.; Choi, J. Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems. Environ. Health Toxicol. 2015, 30, e2015007. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.; Wang, D. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials 2016, 79, 15–24. [Google Scholar] [CrossRef]
- Kong, C.; Aziz, A.I.; Kakarla, A.B.; Kong, I.; Kong, W. Toxicity evaluation of graphene and poly (Lactic-acid) using a nematode model. Solid State Phenom. 2019, 290, 101–106. [Google Scholar] [CrossRef]
- Karpeta-Kaczmarek, J.; Kędziorski, A.; Augustyniak-Jabłokow, M.A.; Dziewięcka, M.; Augustyniak, M. Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environ. Res. 2018, 166, 602–609. [Google Scholar] [CrossRef]
- Martins, C.H.Z.; de Sousa, M.; Fonseca, L.C.; Martinez, D.S.T.; Alves, O.L. Biological effects of oxidized carbon nanomaterials (1D versus 2D) on Spodoptera frugiperda: Material dimensionality influences on the insect development, performance and nutritional physiology. Chemosphere 2019, 215, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Philbrook, N.A.; Walker, V.K.; Afrooz, A.R.M.N.; Saleh, N.B.; Winn, L.M. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod. Toxicol. 2011, 32, 442–448. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Sahoo, S.K.; Sahu, S.; Mukherjee, S.; Hota, G.; Mishra, M. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ. Sci. Pollut. Res. 2019, 26, 19560–19574. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Lu, Z.; Li, M.; Qu, J.; Ye, W.; Li, F.; Wei, J.; Sun, H.; Li, B. An assessment of the reproductive toxicity of GONPs exposure to Bombyx mori. Ecotoxicol. Environ. Saf. 2021, 210, 111888. [Google Scholar] [CrossRef] [PubMed]
- Mesarič, T.; Sepčić, K.; Drobne, D.; Makovec, D.; Faimali, M.; Morgana, S.; Falugi, C.; Gambardella, C. Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus). Aquat. Toxicol. 2015, 163, 158–166. [Google Scholar] [CrossRef]
- Sumi, N.; Chitra, K.C. Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792). Aquat. Toxicol. 2019, 210, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, Y.; Torres-Duarte, C.; Oviedo, M.J.; Hirata, G.A.; Huerta-Saquero, A.; Vazquez-Duhalt, R. Lipid peroxidation and protein oxidation induced by different nanoparticles in zebrafish organs. Appl. Ecol. Environ. Res. 2015, 13, 709–723. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, W.; Xu, Y.; Ling, J.; Deng, L. Potential reproductive toxicity of multi-walled carbon nanotubes and their chronic exposure effects on the growth and development of Xenopus tropicalis. Sci. Total Environ. 2021, 766, 142652. [Google Scholar] [CrossRef]
- Dasmahapatra, A.K.; Powe, D.K.; Dasari, T.P.S.; Tchounwou, P.B. Assessment of reproductive and developmental effects of graphene oxide on Japanese medaka (Oryzias latipes). Chemosphere 2020, 259, 127221. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Wu, Y.; Fu, K.; Chen, Y.; Li, W.; Chu, M. Systematic evaluation of graphene quantum dot toxicity to male mouse sexual behaviors, reproductive and offspring health. Biomaterials 2019, 194, 215–232. [Google Scholar] [CrossRef]
- Skovmand, A.; Jacobsen Lauvås, A.; Christensen, P.; Vogel, U.; Sørig Hougaard, K.; Goericke-Pesch, S. Pulmonary exposure to carbonaceous nanomaterials and sperm quality. Part. Fibre Toxicol. 2018, 15, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, S.; Xu, S.; Zhang, D.; He, J.; Chu, M. Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology 2015, 9, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Farshad, O.; Heidari, R.; Zamiri, M.J.; Retana-Márquez, S.; Khalili, M.; Ebrahimi, M.; Jamshidzadeh, A.; Ommati, M.M. Spermatotoxic Effects of Single-Walled and Multi-Walled Carbon Nanotubes on Male Mice. Front. Vet. Sci. 2020, 7, 591558. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E.; Hashemi, E.; Akbari, E. Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals. Carbon 2015, 95, 309–317. [Google Scholar] [CrossRef]
- Hougaard, K.S.; Jackson, P.; Kyjovska, Z.O.; Birkedal, R.K.; De Temmerman, P.J.; Brunelli, A.; Verleysen, E.; Madsen, A.M.; Saber, A.T.; Pojana, G.; et al. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reprod. Toxicol. 2013, 41, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Johansson, H.K.L.; Hansen, J.S.; Elfving, B.; Lund, S.P.; Kyjovska, Z.O.; Loft, S.; Barfod, K.K.; Jackson, P.; Vogel, U.; Hougaard, K.S. Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice. Part. Fibre Toxicol. 2017, 14, 17. [Google Scholar] [CrossRef] [Green Version]
- Nirmal, N.K.; Awasthi, K.K.; John, P.J. Effects of Nano-Graphene Oxide on Testis, Epididymis and Fertility of Wistar Rats. Basic Clin. Pharmacol. Toxicol. 2017, 121, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Nirmal, N.K.; Awasthi, K.K.; John, P.J. Effects of hydroxyl-functionalized multiwalled carbon nanotubes on sperm health and testes of Wistar rats. Toxicol. Ind. Health 2017, 33, 519–529. [Google Scholar] [CrossRef]
- Farombi, E.O.; Adedara, I.A.; Forcados, G.E.; Anao, O.O.; Agbowo, A.; Patlolla, A.K. Responses of testis, epididymis, and sperm of pubertal rats exposed to functionalized multiwalled carbon nanotubes. Environ. Toxicol. 2016, 31, 543–551. [Google Scholar] [CrossRef]
- National Toxicology Program. NTP Technical Report on the Toxicity Studies of Fullerene C60 (1 μm and 50 nm) (CASRN 99685-96-8) Administered by Nose-Only Inhalation to Wistar Han [Crl:WI (Han)] Rats and B6C3F1/N Mice; National Toxicology Program: Research Triangle Park, NC, USA, 2020.
- D’Amora, M.; Camisasca, A.; Lettieri, S.; Giordani, S. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials 2017, 7, 414. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yang, Q.; Zheng, G.; Han, S.; Zhao, F.; Hu, Q.; Fu, Z. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. Environ. Toxicol. 2019, 34, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Bangeppagari, M.; Park, S.H.; Kundapur, R.R.; Lee, S.J. Graphene oxide induces cardiovascular defects in developing zebrafish (Danio rerio) embryo model: In-Vivo toxicity assessment. Sci. Total Environ. 2019, 673, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, S.; Strojny-Cieślak, B.; Wierzbicki, M.; Kutwin, M.; Sawosz, E.; Kamaszewski, M.; Matuszewski, A.; Sosnowska, M.; Szczepaniak, J.; Daniluk, K.; et al. Comparison of the toxicity of pristine graphene and graphene oxide, using four biological models. Materials 2021, 14, 4250. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, X.; Sun, J.; Zhou, Q. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology 2016, 10, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Su, M.; Wang, H.; Zhou, L.; Meng, Z.; Xiong, G.; Liao, X.; Lu, H. Carboxyl graphene oxide nanoparticles induce neurodevelopmental defects and locomotor disorders in zebrafish larvae. Chemosphere 2021, 270, 128611. [Google Scholar] [CrossRef]
- Falinski, M.M.; Garland, M.A.; Hashmi, S.M.; Tanguay, R.L.; Zimmerman, J.B. Establishing structure-property-hazard relationships for multi-walled carbon nanotubes: The role of aggregation, surface charge, and oxidative stress on embryonic zebrafish mortality. Carbon 2019, 155, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.S.; Igartúa, D.E.; Czarnowski, I.; Feas, D.A.; Del, S.; Alonso, S.; Prieto, M.J. Biological response and developmental toxicity of zebrafish embryo and larvae exposed to multi-walled carbon nanotubes with different dimension. Heliyon 2019, 5, e02308. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhu, L.; Li, Y.; Duan, Z.; Chen, W.; Alvarez, P.J.J. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: Buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 2007, 26, 976–979. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Paz, P.; Negri, V.; Esteban-Arranz, A.; Martínez-Guitarte, J.L.; Ballesteros, P.; Morales, M. Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. Aquat. Toxicol. 2019, 209, 42–48. [Google Scholar] [CrossRef]
- Zhu, B.; Zhu, S.; Li, J.; Hui, X.; Wang, G.X. The developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in: Artemia salina. Toxicol. Res. 2018, 7, 897–906. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Campo, E.M.; Bossing, T. Drosophila embryos as model to assess cellular and developmental toxicity of Multi-Walled Carbon Nanotubes (MWCNT) in living organisms. PLoS ONE 2014, 9, e88681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziewięcka, M.; Flasz, B.; Rost-Roszkowska, M.; Kędziorski, A.; Kochanowicz, A.; Augustyniak, M. Graphene oxide as a new anthropogenic stress factor—Multigenerational study at the molecular, cellular, individual and population level of Acheta domesticus. J. Hazard. Mater. 2020, 396, 122775. [Google Scholar] [CrossRef]
- Sawosz, E.; Jaworski, S.; Kutwin, M.; Hotowy, A.; Wierzbicki, M.; Grodzik, M.; Kurantowicz, N.; Strojny, B.; Lipińska, L.; Chwalibog, A. Toxicity of pristine graphene in experiments in a chicken embryo model. Int. J. Nanomed. 2014, 9, 3913–3922. [Google Scholar] [CrossRef] [Green Version]
- Szmidt, M.; Sawosz, E.; Urbańska, K.; Jaworski, S.; Kutwin, M.; Hotowy, A.; Wierzbicki, M.; Grodzik, M.; Lipińska, L.; Chwalibog, A. Toxicity of different forms of graphene in a chicken embryo model. Environ. Sci. Pollut. Res. 2016, 23, 19940–19948. [Google Scholar] [CrossRef] [PubMed]
- Kurantowicz, N.; Sawosz, E.; Halik, G.; Strojny, B.; Hotowy, A.; Grodzik, M.; Piast, R.; Pasanphan, W.; Chwalibog, A. Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model. Int. J. Nanomed. 2017, 12, 2887–2898. [Google Scholar] [CrossRef] [Green Version]
- Jaworski, S.; Hinzmann, M.; Sawosz, E.; Grodzik, M.; Kutwin, M.; Wierzbicki, M.; Strojny, B.; Vadalasetty, K.P.; Lipińska, L.; Chwalibog, A. Interaction of different forms of graphene with chicken embryo red blood cells. Environ. Sci. Pollut. Res. 2017, 24, 21671–21679. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, F.; Wang, Z.; Zhang, T.; Teng, C.; Wang, Z. Altered gut microbiome accompanying with placenta barrier dysfunction programs pregnant complications in mice caused by graphene oxide. Ecotoxicol. Environ. Saf. 2021, 207, 111143. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, T.; Ohyama, K.I.; Hirose, A.; Nishimura, T.; Nakae, D.; Ogata, A. Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J. Toxicol. Sci. 2012, 37, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Liu, T.; Li, L.; Liu, H.; Liang, Q.; Meng, X. Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials 2015, 40, 23–31. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Zhang, A.; Meng, K.; Liu, Y.; Pan, Y.; Qu, W.; Chen, D.; Xie, S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv. Colloid Interface Sci. 2020, 284, 102261. [Google Scholar] [CrossRef] [PubMed]
CNPS | Exposure | Findings | References | |
---|---|---|---|---|
Caenorhabditis elegans | GO | 10 mg/L; 30 h | Accumulation in reproductive organs ↓ spermatogenesis ↑ ROS | Kim et al. [40] |
GO (single and few layers), pristine GNP, GNP-COOH, GNP-NH2 | 5, 50 mg/L; 72 h | Accumulation in reproductive organs ↓ reproduction potentiality SLGO > FLGO > GNP-pristine > GNP–NH2 > GNP–COOH | Chatterjee et al. [41] | |
GO | 25 µg/mL; 60 min | ↑ germ cell apoptosis alteration of gonad development | Zhao et al. [42] | |
GO; GNP, polylactic acid-GNP | 50, 200, 500, 1000 μg/mL | No reproductive toxicity | Kong et al. [43] | |
Acheta domesticus | Nanodiamonds | 20, 200 µg/g daily with food—until the death of the last individual. | ↓ survival ↓egg production | Kapeta-Kaczmarek et al. [44] |
Spodoptera frugiperda | MWCNTs, GO | 0, 10, 100, 1000 µg/g; in diet | GO ↓ fertility and fecundity | Martins et al. [45] |
Drosophila melanogaster | SWCNT-OH hydroxylated single-walled carbon nanotubes | 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, w/v | No reproductive toxicity | Philbrook et al. [46] |
GO | 50, 100, 150, 200, 250, 300, and 500 mg/L; in food | dose of 500 mg/L flies lay much smaller number of eggs and do not turn into larvae ↑ death of ectodermal stem cells | Priyadarsiny et al. [47] | |
Bombyx mori | GO | 25 mg/L | ↑ ROS ↑ DNA damage ↓ reproduction ↓ oogonia and oocytes | Fang et al. [48] |
Paracentrotus lividus | CB, GO | 0.0001, 0.001, 0.01, 0.1, 1.0 mg/L; 1 h | CB at all doses ↓ reduction of egg fertilization 50%. GOs did not affect fertilization | Mesarič et al. [49] |
Anabas testudineus | Fullerene | 5 mg/L and 10 mg/L; 96 h or 60 days | ↓ weight of the ovary and testes ↓ activity of antioxidant enzymes ↑ ROS 60 days = alteration of the ovary and testes ↓ number of sperm and spermatocytes | Sumi et al. [50] |
Danio rerio | MWCNT–COOH | 0.5 and 1.0 ppm; 48 h | ↑ ROS + lipid peroxidation in ovary and testis | Carrillo et al. [51] |
Xenopus tropicalis | MWCNT | 0.5, 2.5 mg/L; 56 days. | ↓ body growth ↓ gonads (testis, ovary) | Zhao et al. [52] |
Oryzias latipes | GO | 25, 50, 100, and 200 μg/g; intraperitoneal injection | Dose dependent ↓ fecundity ↓ embryo hatchability agglomerates of GO in gonads without tissue damage | Dasmahapatra et al. [53] |
Mice | GQD | 150 mg/kg, 500 μL/75 mg/kg, 200 μL oral gavage/intravenous injection | No reproductive toxicity | Zhang et al. [54] |
GO, amorphous CB (Flammruss 101), CB (Printex 90), and diesel particle matter (SRM1650b) | 50 μL suspension intratracheally instilled | No reproductive toxicity | Skovmand et al. [55] | |
GO | 6.25–300 mg/kg Intraabdominal or intravenous application single or repeated administration | No reproductive toxicity | Liang et al. [56] | |
SWCNTs MWCNTs | 10, 50 mg/kg/d; for 5 weeks, orally administered | SWCNTs 50 mg/kg ↓ testis, epididymis, vas deferens both CNPs ↓ sperm count ↓ sperm viability and motility ↑ROS testicular tissue damage | Farshad et al. [57] | |
nanoscale GO | 2, 20, 200, 2000 µg/mL; injected intravenously | ↓ sperm viability and motility morphological abnormalities of the sperm ↑ ROS production in semen + DNA fragmentation (200 µg/mL and 2000 µg/mL) Female mice inseminated by male NGOs ↓ FSH, LH, prolactin, progesterone during pregnancy | Akhavan et al. [58] | |
MWCNTs | Total dose 67 μg animal; intratracheal application female mice were instilled once with 50 μL | mice bred together delayed time to birth of first litter | Hougaard et al. [59] | |
MWCNTs | 67 μg estrous cycle 2 μg,18 μg, 67 μg delayed delivery intratracheally instilled | ↑ estrous cycle (2 days) 2 μg ↓ time to delivery 18 μg and 67 μg delayed delivery | Johansson et al. [60] | |
Rats | nanoscale GOs | 0.4, 2.0, or 10.0 mg/kg for 7, 15, or 30 days | Dose dependent ↓ sperm count ↓ sperm motility ↑ morphological abnormalities in testicular tissue | Nirmal et al. [61] |
OH–MWCNTs | 0.4, 2.0, and 10.0 mg/kg (15 doses) | Dose dependent ↓ sperm count ↓sperm motility ↑ sperm abnormities Severe testicular damage | Nirmal et al. [62] | |
MWCNT–COOH | 0.25, 0.5, 0.75, and 1.0 mg/kg/d for 5 days; intraperitoneal application | ↑ activity of antioxidant enzymes and malondialdehyde level in the testes, epididymis and sperm ↓ sperm count ↓ sperm motility ↓ testosterone COOH caused ↑ sperm abnormities increase in sperm abnormalities morphological changes in the testes and epididymis. | Farombi et al. [63] |
CNPS | Exposure Dose; Time | Findings | References | |
---|---|---|---|---|
Danio rerio | Oxi-CNOs, Oxi-CNHs, GOs | 5, 10, 50, 100 μg/mL/120 h after fertilization | ↓ survival rate delayed development cardiotoxicity malformations | D’Amora et al. [65] |
GO | 0, 0.01, 0.1, 1, 10 μg/mL; 2 hpf—5 days | ↓ locomotor activity Malformation ↑ Oxidative stress | Yang et al. [66] | |
GO | 0.1–0.3, 0.4–1 mg/mL /14 h | cardiotoxicity ↑ mortality | Bangeppagari et al. [67] | |
Pristine graphene, GOs | 50 and 100 μg/mL /96 h | ↑ mortality ↑ coagulation | Jaworski et al. [68] | |
GOs | 0.01, 1.0, 10, 100 mg/L/96 h | ↓ hatching rate ↓ movement cardiotoxicity yolk sack edema eye damage | Chen et al. [69] | |
GO–COOH | 10, 50, 100 mg/L; 6–144 hpf | ↓ locomotor activity ↓ tail coiling ↑ oxidative stress ↑ genes for acetylcholine esterase and ATPase neurotoxicity | Cao et al. [70] | |
O–MWCNTs | 50 μg/mL + 12.5, 25, 50 mg/L; 9 and 10.5 hpf—120 h | ↑ ROS production ↑ mortality | Falinski et al. [71] | |
Short + Long MWCNTs | 0.005, 0.05, 0.5, 5, 50 ppm; 4 h post fertilization—2 days | ↓ locomotor activity ↓ neutrophil migration + malformation cardiotoxicity ↓ neutrophil migration | Martines et al. [72] | |
Fullerene and fullerenol | 1.5 mg, 50 mg/L/1.5 hpf + 24–96 h | Fullerene ↓ development ↓ survival rate and hatching cardiotoxicity fullerenol—no toxic effect | Zhu et al. [73] | |
Chironomus riparius | MWCNT–COOH | 10, 100, 1000 μg/L/24 h | ↓ expression of Hsp27, Hsp70 ↑ relative RNA expression | Martínez-Paz et al. [74] |
Artemia salina | O–SWCNTs | 0–600 mg/L; 24 h | ↑ mortality ↑ oxidative stress ↓ locomotor activity ↓ body length | Zhu et al. [75] |
Paracentrotus lividus | Carbon black or GO | 0.0001–1.0 mg/L; sperm exposed to GO | ↓ cholinesterase activity morphological abnormalities | Mesarič et al. [49] |
Drosophila embryos | MWCNTs | 5 pg /embryo/1 injection | no toxicity, expect ↑ death of ectodermal stem cells | Liu et al. [76] |
Acheta domesticus | GO | 0.2, 2, 20 μg/g/1 injection | ↓ lifespan ↓ number of larvae ↓ hatching time Changes to 3rd generation | Dziewięcka et al. [77] |
Chicken embryos | pristine GPN | 50–10,000 μg/L (1000–10,000); injection in ovo | ↓ survival rate ↓ PCNA expression neurotoxicity vascular toxicity | Sawosz et al. [78] |
pristine GPN, GO, rGO | 50, 500, 5000 μg/mL; injection in ovo |
↓ survival rate liver toxicity DNA damage | Szmidt et al. [79] | |
nanodiamonds, graphite, pristine GPN, small GO, large GO, rGO | 500 μg/l; injection in ovo | No reproductive toxicity | Kurantowicz et al. [80] | |
GO | 50, 500, 5000 μg/mL; injection in ovo |
↑ ROS hematotoxicity | Jaworski et al. [81] | |
Pregnant mice | GO | 0.2 mL/10 g body weight daily during organogenesis perion | ↑dead fetus ↑resorb embryos skeletal malformations microbiome disruption | Liu et al. [82] |
MWCNTs | 2, 3, 4, 5 mg/kg body weight; intraperitoneal injection, 9 gestational days vs. 3, 4, 5 mg/kg body weight; intratracheal application | ↑ fetal resorption skeletal malformation | Fujitani et al. [83] | |
Lactating mice | GO | 0.05, 0.5 mg/mL; drinking water/21 days | ↓ development (weight, length) organ toxicity | Fu et al. [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holmannova, D.; Borsky, P.; Svadlakova, T.; Borska, L.; Fiala, Z. Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. Nanomaterials 2022, 12, 1716. https://doi.org/10.3390/nano12101716
Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z. Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. Nanomaterials. 2022; 12(10):1716. https://doi.org/10.3390/nano12101716
Chicago/Turabian StyleHolmannova, Drahomira, Pavel Borsky, Tereza Svadlakova, Lenka Borska, and Zdenek Fiala. 2022. "Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles" Nanomaterials 12, no. 10: 1716. https://doi.org/10.3390/nano12101716
APA StyleHolmannova, D., Borsky, P., Svadlakova, T., Borska, L., & Fiala, Z. (2022). Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. Nanomaterials, 12(10), 1716. https://doi.org/10.3390/nano12101716