Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni–Metal Hydride Batteries: Statistical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Spent Nickel–Metal Hydride (Ni–MH) Batteries
2.2. Apparatus and Chemicals
3. Results and Discussion
3.1. Pre-Treatment and Characterization of the Battery Powder
3.2. Leaching of REEs from Spent Ni–MH Batteries
3.2.1. Influence of (NH4)2SO4 Concentration
3.2.2. Influence of Time
3.2.3. Influence of The Solid/Liquid (S/L) Ratio
3.2.4. Influence of Temperature
3.3. Dissolution Kinetic Analysis of REEs
3.4. Regression and Correlation Results between Leaching Factors and REEs
3.5. Separation of Zinc and REEs Products
3.6. Separation of Ce(IV) Individually
3.6.1. Influence of pH
3.6.2. Influence of Time
3.6.3. Cerium Oxide Separation
3.7. Flowsheet
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allam, E.M.; Lashen, T.A.; Abou El-Enein, S.A.; Hassanin, M.A.; Sakr, A.K.; Hanfi, M.Y.; Sayyed, M.I.; Al-Otaibi, J.S.; Cheira, M.F. Cetylpyridinium Bromide/Polyvinyl Chloride for Substantially Efficient Capture of Rare Earth Elements from Chloride Solution. Polymers 2022, 14, 954. [Google Scholar] [CrossRef] [PubMed]
- Sakr, A.K.; Mohamed, S.A.; Mira, H.I.; Cheira, M.F. Successive leaching of uranium and rare earth elements from El Sela mineralization. J. Sci. Eng. Res. 2018, 5, 95–111. Available online: http://jsaer.com/download/vol-5-iss-9-2018/JSAER2018-05-09-95-111.pdf (accessed on 8 October 2018).
- Allam, E.M.; Lashen, T.A.; Abou El-Enein, S.A.; Hassanin, M.A.; Sakr, A.K.; Cheira, M.F.; Almuqrin, A.; Hanfi, M.Y.; Sayyed, M.I. Rare Earth Group Separation after Extraction Using Sodium Diethyldithiocarbamate/Polyvinyl Chloride from Lamprophyre Dykes Leachate. Materials 2022, 15, 1211. [Google Scholar] [CrossRef]
- Sakr, A.K.; Cheira, M.F.; Hassanin, M.A.; Mira, H.I.; Mohamed, S.A.; Khandaker, M.U.; Osman, H.; Eed, E.M.; Sayyed, M.I.; Hanfi, M.Y. Adsorption of Yttrium Ions on 3-Amino-5-Hydroxypyrazole Impregnated Bleaching Clay, a Novel Sorbent Material. Appl. Sci. 2021, 11, 10320. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Ali Kucuker, M.; Kuchta, K.; et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef] [Green Version]
- Marra, A.; Cesaro, A.; Belgiorno, V. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes. Environ. Sci. Pollut. Res. Int. 2019, 26, 19897–19905. [Google Scholar] [CrossRef]
- Mahmoud, N.S.; Atwa, S.T.; Sakr, A.K.; Abdel Geleel, M. Kinetic and thermodynamic study of the adsorption of Ni (II) using Spent Activated clay Mineral. N. Y. Sci. J. 2012, 5, 62–68. [Google Scholar]
- Meng, T.; Young, K.-h.; Koch, J.; Ouchi, T.; Yasuoka, S. Failure Mechanisms of Nickel/Metal Hydride Batteries with Cobalt-Substituted Superlattice Hydrogen-Absorbing Alloy Anodes at 50 °C. Batteries 2016, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Pietrelli, L.; Bellomo, B.; Fontana, D.; Montereali, M.R. Rare earths recovery from NiMH spent batteries. Hydrometallurgy 2002, 66, 135–139. [Google Scholar] [CrossRef]
- Larsson, K.; Ekberg, C.; Ødegaard-Jensen, A. Dissolution and characterization of HEV NiMH batteries. Waste Manag. 2013, 33, 689–698. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Tzanetakis, N.; Scott, K. Recycling of nickel–metal hydride batteries. I: Dissolution and solvent extraction of metals. J. Chem. Technol. Biotechnol. 2004, 79, 919–926. [Google Scholar] [CrossRef]
- Rodrigues, L.E.O.C.; Mansur, M.B. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel–metal–hydride batteries. J. Power Sources 2010, 195, 3735–3741. [Google Scholar] [CrossRef]
- Resende, L.V.; Morais, C.A. Study of the recovery of rare earth elements from computer monitor scraps—Leaching experiments. Miner. Eng. 2010, 23, 277–280. [Google Scholar] [CrossRef]
- Gasser, M.S.; Aly, M.I. Separation and recovery of rare earth elements from spent nickel–metal-hydride batteries using synthetic adsorbent. Int. J. Miner. Process. 2013, 121, 31–38. [Google Scholar] [CrossRef]
- Zhao, Z.; Qiu, Z.; Yang, J.; Lu, S.; Cao, L.; Zhang, W.; Xu, Y. Recovery of rare earth elements from spent fluid catalytic cracking catalysts using leaching and solvent extraction techniques. Hydrometallurgy 2017, 167, 183–188. [Google Scholar] [CrossRef]
- Meshram, P.; Somani, H.; Pandey, B.D.; Mankhand, T.R.; Deveci, H.; Abhilash. Two stage leaching process for selective metal extraction from spent nickel metal hydride batteries. J. Clean. Prod. 2017, 157, 322–332. [Google Scholar] [CrossRef]
- Innocenzi, V.; Vegliò, F. Recovery of rare earths and base metals from spent nickel-metal hydride batteries by sequential sulphuric acid leaching and selective precipitations. J. Power Sources 2012, 211, 184–191. [Google Scholar] [CrossRef]
- Tanong, K.; Tran, L.-H.; Mercier, G.; Blais, J.-F. Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. J. Clean. Prod. 2017, 148, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Process optimization and kinetics for leaching of rare earth metals from the spent Ni–metal hydride batteries. Waste Manag. 2016, 51, 196–203. [Google Scholar] [CrossRef]
- Meshram, P.; Abhilash; Pandey, B.D.; Mankhand, T.R.; Deveci, H. Acid baking of spent lithium ion batteries for selective recovery of major metals: A two-step process. J. Ind. Eng. Chem. 2016, 43, 117–126. [Google Scholar] [CrossRef]
- Lie, J.; Liu, J.-C. Selective recovery of rare earth elements (REEs) from spent NiMH batteries by two-stage acid leaching. J. Environ. Chem. Eng. 2021, 9, 106084. [Google Scholar] [CrossRef]
- Zhi, H.; Ni, S.; Su, X.; Xie, W.; Zhang, H.; Sun, X. Separation and recovery of rare earth from waste nickel-metal hydride batteries by phosphate based extraction-precipitation. J. Rare Earths 2022, 40, 974–980. [Google Scholar] [CrossRef]
- Moldoveanu, G.A.; Papangelakis, V.G. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 2012, 117–118, 71–78. [Google Scholar] [CrossRef]
- Moldoveanu, G.A.; Papangelakis, V.G. Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy 2013, 131–132, 158–166. [Google Scholar] [CrossRef]
- Kim, J.-A.; Dodbiba, G.; Tanimura, Y.; Mitsuhashi, K.; Fukuda, N.; Okaya, K.; Matsuo, S.; Fujita, T. Leaching of Rare-Earth Elements and Their Adsorption by Using Blue-Green Algae. Mater. Trans. 2011, 52, 1799–1806. [Google Scholar] [CrossRef] [Green Version]
- Chi, R.; Xu, Z.; Yu, J.; He, Z. Rare Earth Elements 2013; Metallurgical Society of CIM: Montreal, QC, Canada, 2013; pp. 37–46. [Google Scholar]
- Porvali, A.; Wilson, B.P.; Lundström, M. Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate. Waste Manag. 2018, 71, 381–389. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Leaching of base metals from spent Ni–metal hydride batteries with emphasis on kinetics and characterization. Hydrometallurgy 2015, 158, 172–179. [Google Scholar] [CrossRef]
- Gibbs, M.M. A simple method for the rapid determination of iron in natural waters. Water Res. 1979, 13, 295–297. [Google Scholar] [CrossRef]
- Karatepe, Ö.; Yıldız, Y.; Pamuk, H.; Eris, S.; Dasdelen, Z.; Sen, F. Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy–PANI nanocomposites as a novel catalyst for the electro-oxidation of methanol. RSC Adv. 2016, 6, 50851–50857. [Google Scholar] [CrossRef]
- Gado, M.A.; Atia, B.M.; Fathy, W.M. Selective recovery of the main metal values from Rosetta monazite mineral concentrate. Int. J. Environ. Anal. Chem. 2020, 100, 254–267. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering; John Wiley & Sons: New York, NY, USA, 1972; pp. 361–371. [Google Scholar]
- Olanipekun, E. A kinetic study of the leaching of a Nigerian ilmenite ore by hydrochloric acid. Hydrometallurgy 1999, 53, 1–10. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G. Basic Inorganic Chemistry; John Wiley & Sons: New York, NY, USA, 1976; p. 380. [Google Scholar]
- Kedari, C.S.; Pandit, S.S.; Ramanujam, A. Studies on the In Situ Electrooxidation and Selective Permeation of Cerium(IV) across a Bulk Liquid Membrane Containing Tributyl Phosphate as the Ion Transporter. Sep. Sci. Technol. 1999, 34, 1907–1923. [Google Scholar] [CrossRef]
- Amer, T.E.; Abdellah, W.M.; Abdel Wahab, G.M.; El-Shahat, M.F. Selective Separation of Yttrium and Cerium(IV) from the Prepared Abu Hamata Lanthanides Cake. Chem. Biomol. Eng. 2016, 1, 26–31. [Google Scholar] [CrossRef]
Components | Weight (g) | Proportion (%) |
---|---|---|
Iron case | 23.68 | 22.77 |
Separator | 6.88 | 6.62 |
Poly cap | 0.3 | 0.29 |
Electrode powder | 73.14 | 70.32 |
Element | Ni | Co | Zn | Mn | Fe | Ce | La | Pr | Nd | Others |
---|---|---|---|---|---|---|---|---|---|---|
Wt. (%) | 45.813 | 4.225 | 1.56 | 2.875 | 6.3 | 6.225 | 5.502 | 1.9199 | 2.438 | 7.282 |
(NH4)2SO4 Concentration and S/L Ratio | Time and Temperature |
---|---|
Ce leaching efficiency, % = 50.87 + 0.06 × (NH4)2SO4 conc. | Ce leaching efficiency, % = 52.89 + 0.13 × Time |
Ce leaching efficiency, % = 93.77−24.66 × S/L ratio | Ce leaching efficiency, % = 64.64 + 0.3 × Temp. |
La leaching efficiency, % = 51.26 + 0.778 × (NH4)2SO4 conc. | La leaching efficiency, % = 47.04 + 0.13 × Time |
La leaching efficiency, % = 90.62−34.25 × S/L ratio | La leaching efficiency, % = 60.67 + 0.3 × Temp. |
Nd leaching efficiency, % = 66.28 + 0.03 × (NH4)2SO4 conc. | Nd leaching efficiency, % = 60.74 + 0.13 × Time |
Nd leaching efficiency, % = 99.17 − 41.14 × S/L ratio | Nd leaching efficiency, % = 52.79 + 0.3 × Temp. |
Pr leaching efficiency, % = 66.43 + 0.03 × (NH4)2SO4 conc. | Pr leaching efficiency, % = 53.61 + 0.17 × Time |
Pr leaching efficiency, % = 93.72 − 20.36 × S/L ratio | Pr leaching efficiency, % = 55.36 + 0.35 × Temp. |
Zn leaching efficiency, % = 57.46 + 0.07 × (NH4)2SO4 conc. | Zn leaching efficiency, % = 39.91 + 0.25 × Time |
Zn leaching efficiency, % = 122.72 − 34.24 × S/L ratio | Zn leaching efficiency, % = 71.88 + 0.22 × Temp. |
Regression and Correlation Results | Ce | La | Nd | Pr | Zn | |
---|---|---|---|---|---|---|
(NH4)2SO4 concentration (g/L) | Pearson correlation | 0.966 ** | 0.882 * | 0.890 * | 0.968 ** | 0.965 ** |
Sig. (p-value) | 0.007 | 0.048 | 0.043 | 0.007 | 0.008 | |
Covariance | 1219.250 | 791.625 | 540.100 | 569.250 | 1405.750 | |
R2 | 0.934 | 0.778 | 0.792 | 0.937 | 0.931 | |
Beta (unstandardized) | 0.06 | 0.04 | 0.03 | 0.03 | 0.07 | |
N | 5 | 5 | 5 | 5 | 5 | |
Time (min) | Pearson correlation | 0.941 * | 0.945 * | 0.952 * | 0.949 * | 0.872 |
Sig. (p-value) | 0.017 | 0.015 | 0.013 | 0.014 | 0.054 | |
Covariance | 701.850 | 662.100 | 667.200 | 881.550 | 1310.100 | |
R2 | 0.885 | 0.893 | 0.906 | 0.900 | 0.761 | |
Beta (unstandardized) | 0.13 | 0.13 | 0.13 | 0.17 | 0.25 | |
N | 5 | 5 | 5 | 5 | 5 | |
S/L ratio | Pearson correlation | −0.788 | −0.858 * | −0.840 * | −0.664 | −0.742 |
Sig. (p-value) | 0.063 | 0.029 | 0.037 | 0.150 | 0.091 | |
Covariance | −2.422 | −3.363 | −4.040 | −2.000 | −3.362 | |
R2 | 0.621 | 0.736 | 0.705 | 0.441 | 0.551 | |
Beta (unstandardized) | −24.66 | −34.25 | −41.14 | −20.36 | −34.24 | |
N | 6 | 6 | 6 | 6 | 6 | |
Temperature (°C) | Pearson correlation | 0.786 | 0.955 ** | 0.948 ** | 0.896 * | 0.859 * |
Sig. (p-value) | 0.064 | 0.003 | 0.004 | 0.016 | 0.028 | |
Covariance | 629.143 | 627.127 | 759.577 | 745.683 | 469.635 | |
R2 | 0.617 | 0.913 | 0.899 | 0.803 | 0.739 | |
Beta (unstandardized) | 0.300 | 0.3 | 0.36 | 0.35 | 0.22 | |
N | 6 | 6 | 6 | 6 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weshahy, A.R.; Gouda, A.A.; Atia, B.M.; Sakr, A.K.; Al-Otaibi, J.S.; Almuqrin, A.; Hanfi, M.Y.; Sayyed, M.I.; El Sheikh, R.; Radwan, H.A.; et al. Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni–Metal Hydride Batteries: Statistical Studies. Nanomaterials 2022, 12, 2305. https://doi.org/10.3390/nano12132305
Weshahy AR, Gouda AA, Atia BM, Sakr AK, Al-Otaibi JS, Almuqrin A, Hanfi MY, Sayyed MI, El Sheikh R, Radwan HA, et al. Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni–Metal Hydride Batteries: Statistical Studies. Nanomaterials. 2022; 12(13):2305. https://doi.org/10.3390/nano12132305
Chicago/Turabian StyleWeshahy, Ahmed R., Ayman A. Gouda, Bahig M. Atia, Ahmed K. Sakr, Jamelah S. Al-Otaibi, Aljawhara Almuqrin, Mohamed Y. Hanfi, M. I. Sayyed, Ragaa El Sheikh, Hend A. Radwan, and et al. 2022. "Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni–Metal Hydride Batteries: Statistical Studies" Nanomaterials 12, no. 13: 2305. https://doi.org/10.3390/nano12132305
APA StyleWeshahy, A. R., Gouda, A. A., Atia, B. M., Sakr, A. K., Al-Otaibi, J. S., Almuqrin, A., Hanfi, M. Y., Sayyed, M. I., El Sheikh, R., Radwan, H. A., Hassen, F. S., & Gado, M. A. (2022). Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni–Metal Hydride Batteries: Statistical Studies. Nanomaterials, 12(13), 2305. https://doi.org/10.3390/nano12132305