Polyvinylpyrrolidone as a Stabilizer in Synthesis of AgInS2 Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of PVP-Capped AgInS2 QDs
2.3. Methods
3. Results and Discussion
3.1. Structure Characterization
3.2. Absorption and PL Spectra
3.3. Temperature-Dependent Photoluminescence
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aldakov, D.; Lefrançois, A.; Reiss, P. Ternary and Quaternary Metal Chalcogenide Nanocrystals: Synthesis, Properties and Applications. J. Mater. Chem. C 2013, 1, 3756. [Google Scholar] [CrossRef]
- Gugula, K.; Stegemann, L.; Cywiński, P.J.; Strassert, C.A.; Bredol, M. Facile Surface Engineering of CuInS2/ZnS Quantum Dots for LED down-Converters. RSC Adv. 2016, 6, 10086–10093. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, W.; Wang, W.; Qian, N.; Ji, X. Highly Efficient Zn–Cu–In–Se Quantum Dot-Sensitized Solar Cells through Surface Capping with Ascorbic Acid. ACS Appl. Mater. Interfaces 2019, 11, 6927–6936. [Google Scholar] [CrossRef] [PubMed]
- Matea, C.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. IJN 2017, 12, 5421–5431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girma, W.M.; Fahmi, M.Z.; Permadi, A.; Abate, M.A.; Chang, J.-Y. Synthetic Strategies and Biomedical Applications of I–III–VI Ternary Quantum Dots. J. Mater. Chem. B 2017, 5, 6193–6216. [Google Scholar] [CrossRef]
- Korepanov, O.A.; Mazing, D.S.; Aleksandrova, O.A.; Moshnikov, V.A. Synthesis and Study of Colloidal Nanocrystals Based on Ternary Chalcogenides for Active Media of Heavy Metal Ions Sensors. In Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg, Russia, 28–31 January 2019; pp. 771–773. [Google Scholar]
- Moodelly, D.; Kowalik, P.; Bujak, P.; Pron, A.; Reiss, P. Synthesis, Photophysical Properties and Surface Chemistry of Chalcopyrite-Type Semiconductor Nanocrystals. J. Mater. Chem. C 2019, 7, 11665–11709. [Google Scholar] [CrossRef]
- Kan, C.; Cai, W.; Li, C.; Zhang, L. Optical Studies of Polyvinylpyrrolidone Reduction Effect on Free and Complex Metal Ions. J. Mater. Res. 2005, 20, 320–324. [Google Scholar] [CrossRef]
- Haaf, F.; Sanner, A.; Straub, F. Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses. Poly. J. 1985, 17, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Pattabi, M.; Saraswathi Amma, B.; Manzoor, K. Photoluminescence Study of PVP Capped CdS Nanoparticles Embedded in PVA Matrix. Mater. Res. Bull. 2007, 42, 828–835. [Google Scholar] [CrossRef]
- Mahmoud, W.E.; El-Mallah, H.M. Synthesis and Characterization of PVP-Capped CdSe Nanoparticles Embedded in PVA Matrix for Photovoltaic Application. J. Phys. D Appl. Phys. 2009, 42, 035502. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, T.; Xie, Z.; Jiang, W.; Wang, L.; Jiang, W.; Zhang, X. Highly Efficient Cu-In-Zn-S/ZnS/PVP Composites Based White Light-Emitting Diodes by Surface Modulation. Chem. Eng. J. 2021, 403, 126372. [Google Scholar] [CrossRef]
- Firsov, D.D.; Komkov, O.S.; Solov’ev, V.A.; Kop’ev, P.S.; Ivanov, S.V. Temperature-Dependent Photoluminescence of InSb/InAs Nanostructures with InSb Thickness in the above-Monolayer Range. J. Phys. D Appl. Phys. 2016, 49, 285108. [Google Scholar] [CrossRef]
- Hong, S.P.; Park, H.K.; Oh, J.H.; Yang, H.; Do, Y.R. Comparisons of the Structural and Optical Properties of O-AgInS2, t-AgInS2, and c-AgIn5S8 Nanocrystals and Their Solid-Solution Nanocrystals with ZnS. J. Mater. Chem. 2012, 22, 18939. [Google Scholar] [CrossRef]
- Zhang, W.; Li, D.; Chen, Z.; Sun, M.; Li, W.; Lin, Q.; Fu, X. Microwave Hydrothermal Synthesis of AgInS2 with Visible Light Photocatalytic Activity. Mater. Res. Bull. 2011, 46, 975–982. [Google Scholar] [CrossRef]
- Battistoni, C.; Gastaldi, L.; Lapiccirella, A.; Mattogno, G.; Viticoli, S. Octahedral vs Tetrahedral Coordination of the Co(II) Ion in Layer Compounds: CoxZn1−xIn2S4(O⩽x⩽0.46) Solid Solution. J. Phys. Chem. Solids 1986, 47, 899–903. [Google Scholar] [CrossRef]
- Littlejohn, D.; Chang, S.-G. An XPS Study of Nitrogen-Sulfur Compounds. J. Electron. Spectrosc. Relat. Phenom. 1995, 71, 47–50. [Google Scholar] [CrossRef]
- Lindberg, B.J.; Hamrin, K.; Johansson, G.; Gelius, U.; Fahlman, A.; Nordling, C.; Siegbahn, K. Molecular Spectroscopy by Means of ESCA II. Sulfur Compounds. Correlation of Electron Binding Energy with Structure. Phys. Scr. 1970, 1, 286–298. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Modic, M.; Cvelbar, U.; Dinescu, G.; Mitu, B.; Nikiforov, A.; Leys, C.; Kuchakova, I.; De Vrieze, M.; Felgueiras, H.P.; et al. Effect of Dispersion Solvent on the Deposition of PVP-Silver Nanoparticles onto DBD Plasma-Treated Polyamide 6,6 Fabric and Its Antimicrobial Efficiency. Nanomaterials 2020, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Xian, J.; Hua, Q.; Jiang, Z.; Ma, Y.; Huang, W. Size-Dependent Interaction of the Poly( N-Vinyl-2-Pyrrolidone) Capping Ligand with Pd Nanocrystals. Langmuir 2012, 28, 6736–6741. [Google Scholar] [CrossRef]
- Janakiraman, S.; Farrell, S.L.; Hsieh, C.-Y.; Smolin, Y.Y.; Soroush, M.; Lau, K.K.S. Kinetic Analysis of the Initiated Chemical Vapor Deposition of Poly(Vinylpyrrolidone) and Poly(4-Vinylpyridine). Thin Solid Film. 2015, 595, 244–250. [Google Scholar] [CrossRef]
- Seoudi, R.; Fouda, A.A.; Elmenshawy, D.A. Synthesis, Characterization and Vibrational Spectroscopic Studies of Different Particle Size of Gold Nanoparticle Capped with Polyvinylpyrrolidone. Phys. B Condens. Matter 2010, 405, 906–911. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, X.; Chen, J.; Wang, X.; Ding, S. Mechanisms of PVP in the Preparation of Silver Nanoparticles. Mater. Chem. Phys. 2005, 94, 449–453. [Google Scholar] [CrossRef]
- Mdluli, P.S.; Sosibo, N.M.; Revaprasadu, N.; Karamanis, P.; Leszczynski, J. Surface Enhanced Raman Spectroscopy (SERS) and Density Functional Theory (DFT) Study for Understanding the Regioselective Adsorption of Pyrrolidinone on the Surface of Silver and Gold Colloids. J. Mol. Struct. 2009, 935, 32–38. [Google Scholar] [CrossRef]
- Bai, X.; Purcell-Milton, F.; Kehoe, D.K.; Gun’ko, Y.K. Photoluminescent, “Ice-Cream Cone” like Cu–In–(Zn)–S/ZnS Nanoheterostructures. Sci. Rep. 2022, 12, 5787. [Google Scholar] [CrossRef]
- Mazing, D.S.; Korepanov, O.A.; Aleksandrova, O.A.; Moshnikov, V.A. Synthesis of Ternary Metal Chalcogenide Colloidal Nanocrystals in Aqueous Solutions. Opt. Spectrosc. 2018, 125, 773–776. [Google Scholar] [CrossRef]
- Korepanov, O.A.; Mazing, D.S.; Aleksandrova, O.A.; Moshnikov, V.A.; Komolov, A.S.; Lazneva, E.F.; Kirilenko, D.A. Formation of AgInS2/ZnS Colloidal Nanocrystals and Their Photoluminescence Properties. Phys. Solid State 2019, 61, 2325–2328. [Google Scholar] [CrossRef]
- Su, D.; Wang, L.; Li, M.; Mei, S.; Wei, X.; Dai, H.; Hu, Z.; Xie, F.; Guo, R. Highly Luminescent Water-Soluble AgInS2/ZnS Quantum Dots-Hydrogel Composites for Warm White LEDs. J. Alloy. Compd. 2020, 824, 153896. [Google Scholar] [CrossRef]
- Soares, J.X.; Wegner, K.D.; Ribeiro, D.S.M.; Melo, A.; Häusler, I.; Santos, J.L.M.; Resch-Genger, U. Rationally Designed Synthesis of Bright AgInS2/ZnS Quantum Dots with Emission Control. Nano Res. 2020, 13, 2438–2450. [Google Scholar] [CrossRef]
- Mao, B.; Chuang, C.-H.; Wang, J.; Burda, C. Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States. J. Phys. Chem. C 2011, 115, 8945–8954. [Google Scholar] [CrossRef]
- Hamanaka, Y.; Ozawa, K.; Kuzuya, T. Enhancement of Donor–Acceptor Pair Emissions in Colloidal AgInS2 Quantum Dots with High Concentrations of Defects. J. Phys. Chem. C 2014, 118, 14562–14568. [Google Scholar] [CrossRef]
- Nagamine, G.; Nunciaroni, H.B.; McDaniel, H.; Efros, A.L.; de Brito Cruz, C.H.; Padilha, L.A. Evidence of Band-Edge Hole Levels Inversion in Spherical CuInS2 Quantum Dots. Nano Lett. 2018, 18, 6353–6359. [Google Scholar] [CrossRef]
- Knowles, K.E.; Nelson, H.D.; Kilburn, T.B.; Gamelin, D.R. Singlet–Triplet Splittings in the Luminescent Excited States of Colloidal Cu+:CdSe, Cu+:InP, and CuInS2 Nanocrystals: Charge-Transfer Configurations and Self-Trapped Excitons. J. Am. Chem. Soc. 2015, 137, 13138–13147. [Google Scholar] [CrossRef]
- Debnath, T.; Ghosh, H.N. Ternary Metal Chalcogenides: Into the Exciton and Biexciton Dynamics. J. Phys. Chem. Lett. 2019, 10, 6227–6238. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, Y.; Ogawa, T.; Tsuzuki, M.; Kuzuya, T. Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure. J. Phys. Chem. C 2011, 115, 1786–1792. [Google Scholar] [CrossRef]
- Gaponenko, M.S.; Lutich, A.A.; Tolstik, N.A.; Onushchenko, A.A.; Malyarevich, A.M.; Petrov, E.P.; Yumashev, K.V. Temperature-Dependent Photoluminescence of PbS Quantum Dots in Glass: Evidence of Exciton State Splitting and Carrier Trapping. Phys. Rev. B 2010, 82, 125320. [Google Scholar] [CrossRef]
- Kalytchuk, S.; Zhovtiuk, O.; Kershaw, S.V.; Zbořil, R.; Rogach, A.L. Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry. Small 2016, 12, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, E.; Dag, I.; Litvin, I.; Hodes, G.; Gorer, S.; Reisfeld, R.; Zelner, M.; Minti, H. Optical Properties of CdSe Nanoparticle Films Prepared by Chemical Deposition and Sol–Gel Methods. Chem. Phys. Lett. 1998, 288, 188–196. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korepanov, O.; Aleksandrova, O.; Firsov, D.; Kalazhokov, Z.; Kirilenko, D.; Kozodaev, D.; Matveev, V.; Mazing, D.; Moshnikov, V. Polyvinylpyrrolidone as a Stabilizer in Synthesis of AgInS2 Quantum Dots. Nanomaterials 2022, 12, 2357. https://doi.org/10.3390/nano12142357
Korepanov O, Aleksandrova O, Firsov D, Kalazhokov Z, Kirilenko D, Kozodaev D, Matveev V, Mazing D, Moshnikov V. Polyvinylpyrrolidone as a Stabilizer in Synthesis of AgInS2 Quantum Dots. Nanomaterials. 2022; 12(14):2357. https://doi.org/10.3390/nano12142357
Chicago/Turabian StyleKorepanov, Oleg, Olga Aleksandrova, Dmitrii Firsov, Zamir Kalazhokov, Demid Kirilenko, Dmitriy Kozodaev, Vasilii Matveev, Dmitriy Mazing, and Vyacheslav Moshnikov. 2022. "Polyvinylpyrrolidone as a Stabilizer in Synthesis of AgInS2 Quantum Dots" Nanomaterials 12, no. 14: 2357. https://doi.org/10.3390/nano12142357
APA StyleKorepanov, O., Aleksandrova, O., Firsov, D., Kalazhokov, Z., Kirilenko, D., Kozodaev, D., Matveev, V., Mazing, D., & Moshnikov, V. (2022). Polyvinylpyrrolidone as a Stabilizer in Synthesis of AgInS2 Quantum Dots. Nanomaterials, 12(14), 2357. https://doi.org/10.3390/nano12142357