Next Article in Journal
A Highly Selective and Sensitive Fluorescent Sensor Based on Molecularly Imprinted Polymer-Functionalized Mn-Doped ZnS Quantum Dots for Detection of Roxarsone in Feeds
Next Article in Special Issue
Synthesis of Ni3S2 and MOF-Derived Ni(OH)2 Composite Electrode Materials on Ni Foam for High-Performance Supercapacitors
Previous Article in Journal
Light-Trapping-Enhanced Photodetection in Ge/Si Quantum Dot Photodiodes Containing Microhole Arrays with Different Hole Depths
Previous Article in Special Issue
CuxO-Modified Nanoporous Cu Foil as a Self-Supporting Electrode for Supercapacitor and Oxygen Evolution Reaction
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Facile Synthesis of NixCo3−xS4 Microspheres for High-Performance Supercapacitors and Alkaline Aqueous Rechargeable NiCo-Zn Batteries

1
Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
2
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
*
Authors to whom correspondence should be addressed.
Nanomaterials 2022, 12(17), 2994; https://doi.org/10.3390/nano12172994
Submission received: 25 July 2022 / Revised: 20 August 2022 / Accepted: 26 August 2022 / Published: 30 August 2022
(This article belongs to the Special Issue Novel Nanoporous Materials for Energy Storage and Conversion)

Abstract

:
Electrochemical energy storage devices (EESDs) have caused widespread concern, ascribed to the increasing depletion of traditional fossil energy and environmental pollution. In recent years, nickel cobalt bimetallic sulfides have been regarded as the most attractive electrode materials for super-performance EESDs due to their relatively low cost and multiple electrochemical reaction sites. In this work, NiCo-bimetallic sulfide NixCo3−xS4 particles were synthesized in a mixed solvent system with different proportion of Ni and Co salts added. In order to improve the electrochemical performance of optimized Ni2.5Co0.5S4 electrode, the Ni2.5Co0.5S4 particles were annealed at 350 °C for 60 min (denoted as Ni2.5Co0.5S4-350), and the capacity and rate performance of Ni2.5Co0.5S4-350 was greatly improved. An aqueous NiCo-Zn battery was assembled by utilizing Ni2.5Co0.5S4-350 pressed onto Ni form as cathode and commercial Zn sheet as anode. The NiCo-Zn battery based on Ni2.5Co0.5S4-350 cathode electrode delivers a high specific capacity of 232 mAh g−1 at 1 A g−1 and satisfactory cycling performance (65% capacity retention after 1000 repeated cycles at 8 A g−1). The as-assembled NiCo-Zn battery deliver a high specific energy of 394.6 Wh kg−1 and long-term cycling ability. The results suggest that Ni2.5Co0.5S4-350 electrode has possible applications in the field of alkaline aqueous rechargeable electrochemical energy storage devices for supercapacitor and NiCo-Zn battery.

1. Introduction

In the past ten years, rechargeable electrochemical energy storage devices (EESDs) have attracted extensive attention all over the world due to the increasing energy crisis and environmental pollution [1,2,3,4,5]. At present, lithium-ion batteries dominate the world markets in energy storage field due to their long lifetime. However, the theoretical capacity of lithium-ion batteries is low, and they still have safety issues, which cannot meet the growing demand of high-performance energy storage [6,7]. Recently, transition-metal sulfides (TMSs) with different compositions, morphologies, and structures have been developed and demonstrate excellent performances in various applications [8,9,10,11,12,13,14,15,16]. Supercapacitors and Ni-Zn batteries, as typical alkaline aqueous EESDs, have some advantages: low cost, safety, and quickly charge-discharge speed. Thus, supercapacitors and Ni-Zn batteries demonstrate great potential applications in the rechargeable clean energy storage field [17,18].
So far, Co and Ni-based metal sulfides have been synthesized and used as electrode materials for alkaline aqueous energy storage devices such as supercapacitors and aqueous Ni-Zn batteries [19,20,21,22,23,24,25]. Nickel cobalt bimetallic sulfides such as NiCo2S4, [26,27,28] CoNi2S4, [29,30] and NixCo3−xS4, [31] are regarded to be the most attractive electrode materials for EESDs due to their low cost and synergistic electrochemical reaction sites. For instance, Wang and his collaborators demonstrated a MOF-derived NiCo2S4 and carbon hybrid hollow spheres compactly concatenated by electrospun carbon nanofibers as a binder-free cathode electrode for NiCo2S4/HCS@CFs//Zn battery, and the constructed battery exhibited good performance with high capacity (343.1 mA h g−1 at 3.8 A g−1) and superior rate performance [32]. Wang et al. used a facile two-step solution-based method to synthesize 3D interconnected NiCo2S4 nanosheets integrated into nickel foam, and the constructed NiCo2S4/nickel foam electrode for supercapacitors delivers a high areal specific capacitance of 10.82 F cm−2 at 10 mA cm−2 [33]. Hierarchically hollow C/NiCo2S4 nanosphere composites were developed by Xing using SiO2 nanosphere and as the hard template, and the as-obtained hollow C/NiCo2S4 nanosphere as supercapacitor electrode exhibits an extraordinary specific capacitance of 1545 F g−1 at 2 A g−1 and enhanced cycling stability [34].
Lou group developed a facile self-templating conversion way to synthesize NixCo3−xS4 hollow prisms, and the hollow structure used as supercapacitors electrode revealed excellent pseudo-capacitive performance with high specific capacitance (895.2 F g−1 at 1 A g−1) and cycling stability [35]. However, single component NixCo3−xS4 electrodes face great challenge in achieving high energy density, high power density, and superior rate performance. In order to overcome this obstacle, constructing a composite sulfide structure is an efficient method.
Inspired by the above reported research of nickel cobalt bimetallic sulfide electrode materials, in this work, a facile solvothermal method with water-ethanol-oleamine system [36] was utilized to fabricate porous structured NixCo3−xS4 (x = 0.9, 1.8, 2.5) with different nickel cobalt ratios, denoted as Ni0.9Co2.1S4, Ni1.8Co1.2S4, and Ni2.5Co0.5S4, respectively. The as-prepared Ni2.5Co0.5S4 electrode exhibits the highest specific capacitance among the three samples. In order to obtain an optimal sample with high specific capacitance, we used it as a precursor to construct composite sulfide structure. Furthermore, the capacitance and rate performance of Ni2.5Co0.5S4 electrode was greatly enhanced after annealing at 350 °C for 60 min (denoted as Ni2.5Co0.5S4-350). The fantastic synergistic effect between NiS and CoNi2S4 in Ni2.5Co0.5S4-350 led to enhanced electrochemical performance, and the Ni2.5Co0.5S4-350 with composite sulfide structure displayed a high specific capacitance of 2001 F g−1 at a current density of 1 A g−1. In addition, as a cathode for an aqueous NiCo-Zn battery, the Ni2.5Co0.5S4-350 electrode demonstrates a high specific capacity of 232 mAh g1 at 1 A g−1 and excellent long-time cycling performance. Moreover, the as-assembled NiCo-Zn battery delivers a high specific energy of 394.6 Whkg1 and long-term cycling ability.

2. Experimental Section

2.1. Chemicals

CoCl2·6H2O, NiCl2·6H2O, Zn(Ac)2·2H2O, L-cysteine, N-methyl-2-pyrrolidone (NMP), Ni foam, zinc foil, ethanol, and potassium hydroxide (KOH) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Oleamine and acetylene black were purchased from Aladdin Industrial Corporation (Shanghai, China). All chemicals were used without further purification in this work.

2.2. Preparation of NixCo3−xS4 Microspheres

At first, 0.1M CoCl2·6H2O and NiCl2·6H2O solution were prepared and stored for later use. To prepare Ni2.5Co0.5S4 particles, as a typical preparation process, 0.81g oleamine and 4 mL ethanol were added to a 20 mL autoclave under strong stirring, then the as-prepared CoCl2·6H2O (0.1 mL) and NiCl2·6H2O (0.4 mL) solution, 0.5 mL H2O and 0.0485g L-cysteine, were added and further stirred for 30 min to form a uniform solution. Next, the autoclave was sealed and heated at 180 °C for 12 h. The black precipitate was obtained and washed with ethanol three times. For the synthesis of Ni1.8Co1.2S4 and Ni0.9Co2.1S4 samples, the synthesis process is the same as that of Ni2.5Co0.5S4, except for the difference of added metal salts solution (0.165 mL CoCl2·6H2O and 0.335 mL NiCl2·6H2O for Ni1.8Co1.2S4, 0.335 mL CoCl2·6H2O, and 0.165 mL NiCl2·6H2O for Ni0.9Co2.1S4). In order to improve the electrochemical performance of Ni2.5Co0.5S4 electrode, the Ni2.5Co0.5S4 particles were annealed at 350 °C for 60 min and denoted as Ni2.5Co0.5S4-350.

2.3. Material Characterization

The phase of the as-synthesized NixCo3−xS4 samples was checked via X-ray diffraction (XRD) on a PANalytical X’ Pert. The surface morphology and microstructure were studied on SEM (Hitachi SU8010, Japan) and TEM (FEI Tecnai G2, USA) equipment, respectively. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (ESCALab 250XI, USA) were used to analyze composition and chemical states of the as-synthesized samples.

2.4. Electrode Preparation and Electrochemical Measurements

The supercapacitor positive electrode was prepared by manual coating method, and the electrode slurry was firstly prepared via mixing NixCo3−xS4, acetylene black, and polyvinylidene-fluoride (the mass ratio is 8:1:1) with 110 µL of N-methylpyrrolidone. Then, the slurry was cautiously coated onto a piece of cleaned Ni foam (1cm × 1cm) and dried at 80 °C in a vacuum for one night. The investigation of Ni-Zn battery in a two-electrode cell was carried out on an electrochemical workstation (CHI 660E) using the Ni2.5Co0.5S4-350 coated Ni form as positive electrode and a commercial Zn plate as negative electrode, respectively, and the mixed solution of 2 M KOH and 0.2 M Zn(Ac)2·2H2O was used as electrolytes. The cycle voltammetry (CV) and galvanostatic charge/discharge (GCD) for supercapacitor and Ni-Zn battery were also performed on CHI 660E. The Nyquist plots were obtained at open circuit potential with the frequency range of 0.01Hz-100KHz. The calculation formula [18,21,37] of specific capacitance (Cs, F g−1), specific capacity (Cm, mAh g−1), energy density (E, Wh kg−1), and power density (P, kW kg−1) are provided in the supporting information.

3. Results and Discussion

Scheme 1 illustrates the preparation of porous NixCo3−xS4 microspheres via a mixed solvothermal method in a water–ethanol–oleamine solvent system. First, the morphology and microstructure of the series NixCo3−xS4 (x = 0.9, 1.8, 2.5) particles were detected by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Figure 1a–c illustrates SEM images of the as-prepared Ni0.9Co2.1S4, Ni1.8Co1.2S4, and Ni2.5Co0.5S4 microsphere samples, respectively. SEM images show the uniform microsphere morphology with smooth surface, the average diameters for as-prepared Ni0.9Co2.1S4 microspheres is ~1.93 µm, after doping high contents of Ni ions, the corresponding particles sizes increase from 2.26 to 2.46 µm (Figure S1). The energy-dispersive X-ray spectrum (EDS) results demonstrated the Co and Ni elements successfully included in the series sulfides samples. EDS element mapping clearly confirmed Co, Ni and S elements are uniform distribution in the NixCo3−xS4 samples (Figure 1d–f). The atomic percentage (at.%) of Co/Ni/S in Ni2.5Co0.5S4 is 39.58: 7.01: 53.41, and the ratio is fitted to the stoichiometry of Ni2.5Co0.5S4. The Ni/Co/S at.% of Ni0.9Co2.1S4 and Ni1.8Co1.2S4 samples is 15.04: 35.80: 49.16 and 31.46: 19.15: 49.39, respectively (Figure 1h–i, Table S1), which was consistent with the feed molar ratios of Co and Ni elements.
In addition, Ni2.5Co0.5S4 sample was annealed at 350 °C in the muffle furnace for 60 min and denoted as Ni2.5Co0.5S4-350. After the annealing treatment, the appearance of the Ni2.5Co0.5S4 was almost not changed, although their size decreased and the surface became somewhat rough. The typical Ni2.5Co0.5S4-350 microsphere structure was further investigated by SEM and TEM, and the corresponding SEM and TEM images are shown in Figure 2a–c. The HAADF image and EDS elemental mapping images shown in Figure 2e indicated that the Co, Ni, and S elements were uniformly distributed in Ni2.5Co0.5S4-350 microsphere. The observed lattice interplanar fringe in the core of Ni2.5Co0.5S4-350 microsphere is ~0.33 nm (marked in grey box), which corresponded well to the (022) plane of cubic CoNi2S4 (Figure 2f). Furthermore, the interplanar spacing of the outer layer of Ni2.5Co0.5S4-350 microsphere is 0.29 nm, which indicated the existence of NiS after annealing process.
The phase composition and crystallinity of as-synthesized microparticles were further checked by X-ray power diffraction (XRD). Figure 3a exhibited the typical XRD patterns for the three microspheres samples obtained by one step solvothermal process, and all the diffraction peaks appearing in the patterns match well with the siegenite CoNi2S4 (JCPDS No.: 96-900-9853). The diffraction peaks of Ni2.5Co0.5S4 at 16.12, 26.57, 31.30, 37.91, 50.04, and 54.83° can be respectively assigned to (111), (022), (113), (004), (115), and (044) planes of cubic CoNi2S4 phase. The diffraction peaks of more Co ions content in the microspheres shift to higher angle of 2 theta in the patterns. Figure 3b visibly exhibited the XRD pattern of thermal treatment Ni2.5Co0.5S4-350 microsphere. Except for the prominent peaks of CoNi2S4, the diffraction peaks at 30.0, 34.5, 45.7, and 53.3° can be ascribed to hexagonal NiS phase, indicating that the composite sulfide structure was successfully synthesized via the calcination process at 350 ℃. The above result is consisted with the HRTEM characterization shown in Figure 2f.
In addition, compared with Ni2.5Co0.5S4, the annealed microsphere is conducive to supply larger specific surface area, and the corresponding isothermal curves are shown in Figure 3c,d. The four samples all showed typical IV type isotherms (Figure 3c and Figure S2). In Figure 3c, the hysteresis loop at the relative pressure ranged from 0.5 to 0.9, which indicated the presence of mesoporous structure. In Figure 3d, the trend of steep increase in the range of 0.6~1.0 indicated the abundant meso-macroporous structure of the annealed sample. The calculated BET surface area of Ni2.5Co0.5S4 and Ni2.5Co0.5S4-350 samples is 3.98 and 9.11 m2 g−1, respectively, which is smaller than that of the Ni0.9Co2.1S4 and Ni1.8Co1.2S4 samples (Figure S2). The main pore size of the Ni2.5Co0.5S4 is between 3-7 nm and Ni2.5Co0.5S4-350 samples showed a wide distribution, which further confirmed that the meso-macropores formed after the calcined process (Insert in Figure 3c,d). The increase of specific surface area of Ni2.5Co0.5S4-350 not only provides abundant active sites for Faradic reaction but also enhances the mass transportation between the electrolyte and electrode.
The XPS survey of Co0.5Ni2.5S4 microspheres and its sintered derivative Ni2.5Co0.5S4-350 is shown in Figure 4a, which indicates the existence of Ni, Co, S, O, C, and traces of N elements. The presence of N 1s may result from the surface absorption of oleamine during the synthesis process. In Figure 4b, the Co 2p high resolution spectrum of Co0.5Ni2.5S4 microspheres can be divided to two double peaks centered at 782.0/798.6 eV and 778.8/793.8 eV, attributed to Co2+ and Co3+, respectively. The fitted Co2+ peaks of calcined microspheres (Co0.5Ni2.5S4-350) display a dramatic increase, while the integral area of commensurable Co3+ peaks reduce compared with that for Co0.5Ni2.5S4. The high-resolution spectrum of Ni 2p demonstrate that the dominant peaks at 856.9 and 875.3 eV significantly boost after the annealing process, characteristic of higher content of Ni3+ in annealed microspheres than that of Co0.5Ni2.5S4 (Figure 4c). The S 2p spectrum was deconvoluted to two groups of peaks located at 161.3/162.5 eV and 161.6/163.9 eV, which is assigned to Co-S and Ni-S bonds, respectively, indicating that Co and Ni ions coexist in the homologous sulfide, whereas the satellite peak at 169.4 eV might be ascribed to SO42−, due to possible partial surface oxidation of the sulfide exposed in air (Figure 4d).
The Ni 2p3/2 peaks of Co0.5Ni2.5S4-350 display a positive shift of ~0.4 eV compared with Co0.5Ni2.5S4 sample, indicating the strong interaction between NiS and CoNi2S4 obtained by the annealing process. Simultaneously, the Co 2p peaks also present a negative shift after the calcination process, which may be attributed to the transfer of electron from NiS to CoNi2S4 at the interface of Co0.5Ni2.5S4-350 microspheres. The Ni-S and Co-S also exhibit some shifts, which further confirmed the strong electron interaction at the newly formed composite interface of Co0.5Ni2.5S4-350 sample. Thus, this phenomenon will help to enhance the electrochemical performance of Co0.5Ni2.5S4 -350 sample [34,38].
To evaluate the as-synthesized NixCo3−xS4 (x = 0.9, 1.8, 2.5) samples as electrode materials in rechargeable EESDs, the electrochemical supercapacitor tests were conducted by a standard three-electrode system in aqueous solution (2.0 M KOH). The cyclic voltammetry (CV) curves of the Ni0.9Co2.1S4, Ni1.8Co1.2S4, and Ni2.5Co0.5S4 electrodes were performed within a potential window of 0 to 0.5 V and exhibited in Figure 5a and Figure S3a–c. Two obvious redox peaks located at 0.34/0.15 V were observed in the CV curves for all the NixCo3−xS4 samples. The maximum nickel doped sample of Ni2.5Co0.5S4 possessed the largest integrated area and peak intensity. In general, as the electrode capacitance is proportional to integrated areas of CV curves, the Ni2.5Co0.5S4 sample can deliver the largest pseudocapacitive capacity. The GCD curves of the three NixCo3−xS4 electrodes at a current density of 2 A g−1 within a potential window of 0–0.42 V were studied and compared in Figure 5b. Figure 5c depicted the specific capacitances of the as-prepared NixCo3−xS4 particles constructed electrodes calculated from GCD curves (Figure S3d–f) at various current densities (2-10 A g−1). Specific capacitances of the Ni2.5Co0.5S4 electrode were calculated to be 1335, 1161, 1042, 925, and 846 F g−1 at current densities of 2, 4, 6, 8, 10 A g−1, respectively. The Ni2.5Co0.5S4 electrode still maintains 63.3% of initial capacitance at 10 A g−1. In comparison, Ni0.9Co2.1S4 and Ni1.8Co1.2S4 electrodes also display relatively high specific capacitances of 959 and 1259 F g−1 at the current density of 2 A g−1, and at the high current density of 10 A g−1, the capacitance of the two electrodes decreased to 698 and 555 F g−1 with the corresponding capacitance retentions of 72.8% and 44.1%, respectively. The long-term cycling stability test of the NixCo3−xS4 electrodes at 4 A g−1 is exhibited in Figure 5d. The capacitance of Ni2.5Co0.5S4 electrode keeps 50.0% of the initial value after 3000 repeated cycles. It is worth mentioning that Ni0.9Co2.1S4 exhibited significantly high cycle stability of 101% initial capacity after long-term cycling.
Oleamine can exist on surface of the particles via coordination bond action and may block some electrochemical sites to reduce the energy storge performance. Thus, the Ni2.5Co0.5S4 electrode material was located through high temperature treatment at 350 °C and denoted as Ni2.5Co0.5S4-350. Furthermore, the capacitance and rate performance of Ni2.5Co0.5S4-350 electrode was greatly enhanced compared with Ni2.5Co0.5S4. The CV and GCD curves shown in Figure 6a,b, Ni2.5Co0.5S4-350 electrode displayed a larger enclosed area of CV curve and longer discharge time of GCD curve compared to the other three NixCo3−xS4 electrodes, which indicated the superior charge storage ability and capacitive performance of the Ni2.5Co0.5S4-350 electrode. The Ni2.5Co0.5S4-350 electrode displays a high specific capacitance of 2001 F g−1 at a current density of 1 A g−1, good rate capability (1795@10Ag−1, 89.7% capacitance retention, Figure 6c), and satisfactory cycling performance (69% of the initial value after 1500 repeated cycles, Figure 6d). The morphology of the Ni2.5Co0.5S4-350 electrode after the cycling test has little change compared with that before cycling (Figure S4). Figure S5 exhibited the Nyquist plots of the as-prepared series electrodes. The inherent resistance (Rs) can be detected from the intercept at real axis, the Rs of Ni0.9Co2.1S4, Ni1.8Co1.2S4, and Ni2.5Co0.5S4-350 are similar (~1.0 Ω), which are all lower than that of Ni2.5Co0.5S4 electrode (1.52 Ω). The Ni2.5Co0.5S4-350 electrode owns the lowest charge transfer resistance (Rct) among the four electrodes. In the low frequency region, the Ni2.5Co0.5S4-350 electrode also shows the steepest slope with the smallest Warburg impedance (Zw) of 2.03 Ω (Table S2), indicating the lowest diffusion resistance of Ni2.5Co0.5S4-350 electrode obtained via annealing process. The lowest electro-transfer and fast ion diffusion resistance of Ni2.5Co0.5S4-350 leads to its improved electrochemical performance [39,40]. The significantly enhanced performance can be comparable to the many reported Co-Ni bimetal sulfides electrodes such as hollow C/NiCo2S4 nanosphere (1545 F g−1 at 2 A g−1) [34], carbon-containing NiCo2S4 hollow-nanoflake electrode (1722 F g−1 at 1 A g−1) [41], onion-like NiCo2S4 electrode (1016 F g−1 at 2 A g−1) [42], NiCo2S4 hollow spheres (756 F g−1 at 1 A g−1) [43], nitrogen-doped carbon nanofibers@ NiCo2S4 composite (1078 F g−1 at 1 A g−1) [44], eggplant-derived carbon@NiCo2S4 (1394.5 F g−1 at 1 A g−1) [45], amorphous CoNi2S4 nanocages (1890 F g−1 at 4 A g−1) [46], and double-shelled zinc-cobalt sulfide (Zn-Co-S) rhombic dodecahedral cages (1266 F g−1 at 1 A g−1) [47]. The detailed supercapacitor performances of Ni2.5Co0.5S4-350 compared with the related sulfides electrodes are listed in Table S3.
Thus, Ni2.5Co0.5S4-350 electrode was further explored in in-depth studies in aqueous alkaline Zn ion batteries, a Ni2.5Co0.5S4-350//Zn battery was fabricated by using the as-fabricated Ni2.5Co0.5S4-350 as cathode and commercial Zn plate as anode, respectively, and the mixed solution of 2 M KOH and 0.2 M Zn(Ac)2 was used as an electrolyte. The cathode and anode reaction in an alkaline solution is expressed as follows [22,23]:
Ni-Co-S +2OH → NiSOH + CoSOH + 2e
CoSOH +OH → CoS(OH)2 + e
[Zn(OH)4]2− + 2e → Zn + 4 OH
Overall reaction equation
[Zn(OH)4]2−+ 2e + Ni-Co-S→ NiSOH + CoS(OH)2 + Zn (4)
Figure 7a depicts the CV curves of Ni2.5Co0.5S4-350//Zn battery at different scan rates (1-10 mV s−1) with a wide voltage range of 1.2-1.95 V vs. Zn. The Ni2.5Co0.5S4-350//Zn exhibits a pair of obvious redox peaks at 1.85 and 1.65 V at 1 mV s−1, and the symmetric redox peaks can still be preserved at 10 mV s−1. The GCD of Ni2.5Co0.5S4-350//Zn at various current densities of 1-10 A g−1 were shown in Figure 7b, as clearly observed from the GCD curves, and the charge and discharge plateau are approximately 1.79 and 1.70 V (1 A g−1), respectively. At a high current density of 10 A g−1, the charging/discharging plateau are still stable, and the discharging voltage plateau decreases slowly with increasing current densities from 1 to 10 A g−1. At the current densities of 1, 2, 4, 6, 8, and 10 A g−1, the Ni2.5Co0.5S4-350//Zn battery yields a high specific capacity of 232, 217, 202, 191, 181, and 172 mAh g−1, respectively. With the 10-times increasement of current density, the calculated capacity retention of 74.1% indicates the good rate performance of Ni2.5Co0.5S4-350//Zn battery in alkaline solution. In addition, when the discharge current density switches to 1 A g−1 after 60 cycles, the battery exhibits specific capacity nearly the same as the initial value, illustrating the high rate capability and stable reversibility of the battery.
The specific capacity of constructed Ni2.5Co0.5S4-350//Zn battery can beat several recently reported aqueous Ni-Zn batteries, such as NiCo2O4//Zn (222.7 mAh g−1) [48], NiCo2O4@ CC//Zn (183.1 mAh g−1 at 1.6 A g−1) [49], Ni2P/C //Zn (176 mAh g−1 at 1 A g−1) [50], Co3O4@NF//Zn (162 mAh g−1 at 1 A g−1) [51], Zn//NiO–CNTs battery (155 mAh g−1 at 1 A g−1) [52], and Ni3S2//Zn (148 mAh g−1) [53]. Furthermore, long-term cycling stability was also evaluated. After 1000 repeated cycles at a high current of 8 A g−1, the Ni2.5Co0.5S4-350//Zn battery still retains 54% capacity retention and has satisfactory cycling stability.
The capacitive and diffusion contribution percentage of Ni2.5Co0.5S4-350 electrode at varied scan rates is shown in Figure 8a, and it is clearly seen that the capacitive contribution increases with the increase of scan rate. Diffusion effect is negatively correlated to scan rate. Power and energy density values of Ni2.5Co0.5S4-350//Zn battery were calculated from capacity values obtained at various current densities and the resulted Ragone plot is shown in Figure 8b. The Ni2.5Co0.5S4-350//Zn battery achieved the energy density of 394.6 W h kg−1 at 1.7 kW kg−1. The energy storage performance of Ni2.5Co0.5S4-350//Zn battery is comparable with the previously reported Ni-Zn batteries such as Ni2P/C//Zn (318 Wh kg−1 at 1.376 kW kg−1) [50], β-Ni(OH)2/CNFs// Zn (325 Wh kg−1 at 1.23 kW kg−1) [54], Ni-Co9S8-0.6//Zn (256.5 Wh kg−1 at 1.69 kW kg−1) [55], DBS-NiCo2O4//Zn (326.5 Wh kg−1 at 0.822 kW kg−1) [56], P-Co3O4//Zn battery (193.7 Wh kg−1 at 1.6 kW kg−1) [57]. NiCo2S4@NiMoO4/Ni2P//Zn (384 Wh kg−1 at 0.46 kW kg−1) [58], Ni/NiO-BCF //Zn (313.4 Wh kg−1 at 0. 66 kW kg−1) [59], NiCo-S-2/RGO//Zn (333.2 Wh kg−1 at 1.7 kW kg−1) [60] (Table S4). The acquired outstanding specific capacity and high energy density, along with the facile preparation method and low-cost, endows the as-prepared Ni2.5Co0.5S4-350 electrode with great potential applications in aqueous electrochemical energy storage devices.

4. Conclusions

In summary, a series of bimetallic sulfide NixCo3−xS4 particles were synthesized via a simple solvothermal method, and the electrochemical performances as electrode materials in alkaline aqueous rechargeable EESDs, including supercapacitor and NiCo-Zn battery, were carefully studied. As a cathode for an aqueous NiCo-Zn battery, the Ni2.5Co0.5S4-350 electrode demonstrates a high specific capacity of 232 mAh g1 at 1 A g−1 and excellent long-time cycling performance at a high current density of 8 A g−1. Moreover, NiCo-Zn battery also emerges with a high energy density of 394.6 W h kg−1 and a power density of 1.7 kW kg1. The acquired good electrochemical energy storage properties might be ascribed to their multiple electrochemical reaction sites and high electrical conductivity. The achieved outstanding specific capacity and high energy density of Ni2.5Co0.5S4-350 electrode endows it with great potential applications in aqueous electrochemical energy storage devices.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/nano12172994/s1, Figure S1 Size distribution for NixCo3−xS4 series samples; Figure S2 Isothermal plot and pore size distribution of Ni0.9Co2.1S4 and Ni1.8Co1.2S4 microspheres; Figure S3 CV and GCD curves for NixCo3−xS4 samples; Figure S4 The SEM images of Ni2.5Co0.5S4-350 electrode before and cycling tests; Figure S5 The Nyquist plots of NixCo3−xS4 electrodes; Table S1 Element composition of NixCo3−xS4 series samples from EDS analysis; Table S2 The fitting resistance values of NixCo3−xS4 series electrodes; Table S3 Comparation of NixCo3−xS4 series samples as supercapacitors with other related electrodes; Table S4 Comparation of Ni2.5Co0.5S4- 350//Zn battery with other Ni-Zn batteries.

Author Contributions

Author Conceptualization, D.Z.; Data curation, B.J., C.L. and J.Z.; Formal Analysis, D.Z.; Funding acquisition, D.Z.; Investigation, B.J. and D.Z.; Methodology, R.Z and D.Z.; Project administration, D.Z. and R.Z.; Supervision, D.Z.; Writing—original draft, B.J., Y.L., Y.B. and D.Z.; Writing—review & editing, H.B., D.Z. and J.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Science Foundation of China (No. 21603004, U1604119), the Foundation of Henan Educational Committee (22A150002), the Science and Technology Research Project of Henan Province (222102240096), and the Program for Innovative Research Team of Science and Technology in the University of Henan Province (18IRTSTHN006).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Fleischmann, S.; Mitchell, J.B.; Wang, R.C.; Zhan, C.; Jiang, D.E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef] [PubMed]
  2. Yu, X.Y.; Lou, X.W. Mixed Metal Sulfides for Electrochemical Energy Storage and Conversion. Adv. Energy Mater. 2018, 8, 1701592. [Google Scholar] [CrossRef]
  3. Zhang, K.; Han, X.P.; Hu, Z.; Zhang, X.L.; Tao, Z.L.; Chen, J. Nanostructured Mn-Based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728. [Google Scholar] [CrossRef] [PubMed]
  4. Zhang, Y.; Zhou, Q.; Zhu, J.X.; Yan, Q.Y.; Dou, S.X.; Sun, W.P. Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis. Adv. Funct. Mater. 2017, 27, 1702317. [Google Scholar] [CrossRef]
  5. Zhou, G.M.; Xu, L.; Hu, G.W.; Mai, L.Q.; Cui, Y. Nanowires for Electrochemical Energy Storage. Chem. Rev. 2019, 119, 11042–11109. [Google Scholar] [CrossRef]
  6. Bruce, P.G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef]
  7. Zhao, Z.J.; Chao, Y.G.; Wang, F.; Dai, J.Y.; Qin, Y.F.; Bao, X.B.; Yang, Y.; Guo, S.J. Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-Performance anode material for lithium-Ion storage. Rare Met. 2022, 41, 1245–1254. [Google Scholar] [CrossRef]
  8. Guo, Y.N.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Adv. Mater. 2019, 31, 1807134. [Google Scholar] [CrossRef]
  9. Kulkarni, P.; Nataraj, S.K.; Balakrishna, R.G.; Nagarajua, D.H.; Reddy, M.V. Nanostructured binary and ternary metal sulfides: Synthesis methods and their application in energy conversion and storage devices. J. Mater. Chem. A 2017, 5, 22040–22094. [Google Scholar] [CrossRef]
  10. Zhu, W.D.; Cheng, Y.; Wang, C.; Ni, P.N.; Lu, X.F. Transition metal sulfides meet electrospinning: Versatile synthesis, distinct properties and prospective applications. Nanoscale 2021, 13, 9112–9146. [Google Scholar] [CrossRef]
  11. Dai, M.; Wang, R. Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. Small 2021, 17, 2006813. [Google Scholar] [CrossRef] [PubMed]
  12. Chen, X.; Liu, Q.; Bai, T.; Wang, W.G.; He, F.L.; Ye, M.D. Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chem. Eng. J. 2021, 409, 127237. [Google Scholar]
  13. Maurya, O.; Khaladkar, S.; Horn, M.R.; Sinha, B.; Deshmukh, R.; Wang, H.X.; Kim, T.Y.; Dubal, D.P.; Kalekar, A. Emergence of Ni-Based Chalcogenides (S and Se) for Clean Energy Conversion and Storage. Small 2021, 17, 2100361. [Google Scholar] [CrossRef] [PubMed]
  14. Liu, X.; Li, Y.Q.; Cao, Z.Y.; Yin, Z.H.; Ma, T.L.; Chen, S.R. Current progress of metal sulfides derived from metal–Organic frameworks for advanced electrocatalysis: Potential electrocatalysts with diverse applications. J. Mater. Chem. A 2022, 10, 1617–1641. [Google Scholar] [CrossRef]
  15. Cheng, Y.; Guo, Y.H.; Zhang, Z.Y.; Dong, S.T.; Wang, H.Y. Facile synthesis of NixCo3−xS4 hollow nanoprism with broader electromagnetic absorption properties: Effect of Ni/Co atomic ratios. J. Alloy. Compd. 2018, 767, 323–329. [Google Scholar] [CrossRef]
  16. Jia, Z.R.; Wang, B.B.; Feng, A.L.; Liu, J.J.; Zhang, C.H.; Zhang, M.; Wu, G.L. Fabrication of NixCo3−xS4 hollow nanosphere as wideband electromagnetic absorber at thin matched thickness. Ceram. Int. 2019, 45, 15854–15859. [Google Scholar] [CrossRef]
  17. Yu, Y.W.; Hu, X.L.; Wang, S.; Qiao, H.D.; Liu, Z.Y.; Song, K.F.; Shen, X.D. High mass loading Ni4Co1-OH@CuO core-Shell nanowire arrays obtained by electrochemical reconstruction for alkaline energy storage. Nano Res. 2022, 15, 685–693. [Google Scholar] [CrossRef]
  18. Chhetri, K.; Kim, T.; Acharya, D.; Muthurasu, A.; Dahal, B.; Bhattarai, R.M.; Lohani, P.C.; Pathak, I.; Ji, S.; Ko, T.H.; et al. Hollow Carbon Nanofibers with Inside-Outside Decoration of Bi-Metallic MOF Derived Ni-Fe Phosphides as Electrode Materials for Asymmetric Supercapacitors. Chem. Eng. J. 2022, 450, 138363. [Google Scholar] [CrossRef]
  19. Dahiya, Y.; Hariram, M.; Kumar, M.; Jain, A.; Sarkar, D. Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities. Coord. Chem. Rev. 2022, 451, 214265. [Google Scholar] [CrossRef]
  20. Zhang, H.Z.; Wang, R.; Lin, D.; Zeng, Y.X.; Lu, X.H. Ni-Based Nanostructures as High-Performance Cathodes for Rechargeable Ni-Zn Battery. ChemNanoMat 2018, 4, 525–536. [Google Scholar] [CrossRef]
  21. He, Y.P.; Zhang, P.P.; Huang, H.; Li, X.B.; Zhai, X.H.; Chen, B.M.; Guo, Z.C. Engineering Sulfur Vacancies of Ni3S2 Nanosheets as a Binder-Free Cathode for an Aqueous Rechargeable Ni-Zn Battery. ACS Appl. Energy Mater. 2020, 3, 3863–3875. [Google Scholar]
  22. Tong, X.; Li, Y.; Pang, N.; Zhou, Y.; Wu, D.J.; Xiong, D.Y.; Xu, S.H.; Wang, L.W.; Chu, P.K. Highly active cobalt-Doped nickel sulfide porous nanocones for highperformance quasi-Solid-State zinc-Ion batteries. J. Energy Chem. 2022, 66, 237–249. [Google Scholar] [CrossRef]
  23. Zhou, Y.; Tong, X.; Pang, N.; Deng, Y.P.; Yan, C.H.; Wu, D.J.; Xu, S.H.; Xiong, D.Y.; Wang, L.W.; Chu, P.K. Ni3S2 Nanocomposite Structures Doped with Zn and Co as Long-Lifetime, High-Energy-Density, and Binder-Free Cathodes in Flexible Aqueous Nickel-Zinc Batteries. ACS Appl. Mater. Interfaces 2021, 13, 34292–34300. [Google Scholar] [CrossRef] [PubMed]
  24. Zhang, J.X.; Deng, Y.; Wu, Y.Q.; Xiao, Z.Y.; Liu, X.B.; Li, Z.J.; Bu, R.R.; Zhang, Q.; Sun, W.; Wang, L. Chemically coupled 0D-3D hetero-Structure of Co9S8-Ni3S4 hollow spheres for Zn-Based supercapacitors. Chem. Eng. J. 2022, 430, 132836. [Google Scholar]
  25. Shi, W.H.; Mao, J.; Xu, X.L.; Liu, W.X.; Zhang, L.; Cao, X.H.; Lu, X.H. An ultra-Dense NiS2/reduced graphene oxide composite cathode for high-Volumetric/gravimetric energy density nickel–Zinc batteries. J. Mater. Chem. A 2019, 7, 15654–15661. [Google Scholar] [CrossRef]
  26. Cui, Z.X.; Shen, S.; Yu, J.Q.; Si, J.H.; Cai, D.P.; Wang, Q.T. Electrospun carbon nanofibers functionalized with NiCo2S4 nanoparticles as lightweight, flexible and binder-Free cathode for aqueous Ni-Zn batteries. Chem. Eng. J. 2021, 426, 130068. [Google Scholar] [CrossRef]
  27. Zhou, J.C.; Wang, Y.C.; Zhou, J.J.; Chen, K.; Han, L. Well-Defined hollow tube@sheets NiCo2S4 core–Shell nanoarrays for ultrahigh capacitance supercapacitor. Dalton Trans. 2021, 50, 15129–15139. [Google Scholar] [CrossRef]
  28. Qu, G.M.; Li, C.L.; Hou, P.Y.; Zhao, G.; Wang, X.; Zhang, X.L.; Xu, X.J. Hierarchically hollow structured NiCo2S4@NiS for high-Performance flexible hybrid supercapacitors. Nanoscale 2020, 12, 4686–4694. [Google Scholar]
  29. Chen, L.N.; Wan, J.F.; Fan, L.; Wei, Y.H.; Zou, J.L. Construction of CoNi2S4 hollow cube structures for excellent performance asymmetric supercapacitors. Appl. Surf. Sci. 2021, 570, 151174. [Google Scholar] [CrossRef]
  30. Cao, X.; He, J.; Li, H.; Kang, L.P.; He, X.X.; Sun, J.; Jiang, R.B.; Xu, H.; Lei, Z.B.; Liu, Z.H. CoNi2S4 Nanoparticle/Carbon Nanotube Sponge Cathode with Ultrahigh Capacitance for Highly Compressible Asymmetric Supercapacitor. Small 2018, 14, 1800998. [Google Scholar] [CrossRef]
  31. Liao, X.B.; Li, Z.H.; He, Q.; Xia, L.X.; Li, Y.; Zhu, S.H.; Wang, M.M.; Wang, H.; Xu, X.; Mai, L.Q.; et al. Three-Dimensional Porous Nitrogen-Doped Carbon Nanosheet with Embedded NixCo3−xS4 Nanocrystals for Advanced Lithium−Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 9181–9189. [Google Scholar]
  32. Yu, J.Q.; Cai, D.P.; Si, J.H.; Zhan, H.B.; Wang, Q.T. MOF-Derived NiCo2S4 and carbon hybrid hollow spheres compactly concatenated by electrospun carbon nanofibers as self-Standing electrodes for aqueous alkaline Zn batteries. J. Mater. Chem. A 2022, 10, 4100–4109. [Google Scholar]
  33. Peng, T.; Qian, Z.Y.; Wang, J.; Song, D.L.; Liu, J.Y.; Liu, Q.; Wang, P. Construction of mass-Controllable mesoporous NiCo2S4 electrodes for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 19376–19382. [Google Scholar]
  34. Lu, W.; Yang, M.; Jiang, X.; Yu, Y.; Liu, X.C.; Xing, Y. Template-Assisted synthesis of hierarchically hollow C/NiCo2S4 nanospheres electrode for high performance supercapacitors. Chem. Eng. J. 2020, 382, 122943. [Google Scholar]
  35. Yu, L.; Zhang, L.; Wu, H.B.; Lou, X.W. Formation of NixCo3−xS4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties. Angew. Chemie 2014, 126, 3785–3788. [Google Scholar] [CrossRef]
  36. Yang, Y.; Yang, Y.; Chen, S.M.; Lu, Q.C.; Song, L.; Wei, Y.; Wang, X. Atomic-Level molybdenum oxide nanorings with full-Spectrum absorption and photoresponsive properties. Nat. Commun. 2017, 8, 1559. [Google Scholar]
  37. Chhetri, K.; Dahal, B.; Mukhiya, T.; Tiwari, A.P.; Muthurasu, A.; Kim, T.; Kim, H.; Kim, H.Y. Integrated hybrid of graphitic carbon-Encapsulated CuxO on multilayered mesoporous carbon from copper MOFs and polyaniline for asymmetric supercapacitor and oxygen reduction reactions. Carbon 2021, 179, 89–99. [Google Scholar]
  38. Yang, Y.; Yao, H.Q.; Yu, Z.H.; Islam, S.M.; He, H.Y.; Yuan, M.W.; Yue, Y.H.; Xu, K.; Hao, W.C.; Sun, G.B.; et al. Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electro-Catalyst for Overall Water Splitting in a Wide pH Range. J. Am. Chem. Soc. 2019, 141, 10417–10430. [Google Scholar]
  39. Chhetri, K.; Dahal, B.; Tiwari, A.P.; Mukhiya, T.; Muthurasu, A.; Ojha, G.P.; Lee, M.; Kim, T.; Chae, S.-H.; Kim, H.Y. Controlled Selenium Infiltration of Cobalt Phosphide Nanostructure Arrays from a Two-Dimensional Cobalt Metal−Organic Framework: A Self-Supported Electrode for Flexible Quasi-Solid-State Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 404–415. [Google Scholar]
  40. Chhetri, K.; Tiwari, A.P.; Dahal, B.; Ojha, G.P.; Mukhiya, T.; Lee, M.; Kim, T.; Chae, S.-H.; Muthurasu, A.; Kim, H.Y. A ZIF-8-Derived nanoporous carbon nanocomposite wrapped with Co3O4-Polyaniline as an efficient electrode material for an asymmetric supercapacitor. J. Electroanal. Chem. 2020, 856, 113670. [Google Scholar]
  41. Mohamed, S.G.; Hussain, I.; Shim, J.-J. One-Step synthesis of hollow C-NiCo2S4 nanostructures for high-Performance supercapacitor electrodes. Nanoscale 2018, 10, 6620–6628. [Google Scholar]
  42. Guan, B.Y.; Yu, L.; Wang, X.; Song, S.Y.; Lou, X.W. Formation of Onion-Like NiCo2S4 Particles via Sequential Ion-Exchange for Hybrid Supercapacitors. Adv. Mater. 2017, 29, 1605051. [Google Scholar] [CrossRef] [PubMed]
  43. Liang, K.Q.; He, W.D.; Deng, X.L.; Ma, H.; Xu, X.J. Controlled synthesis of NiCo2S4 hollow spheres as high-Performance electrode materials for supercapacitors. J. Alloy. Compd. 2018, 735, 1395–1401. [Google Scholar]
  44. Ning, X.L.; Li, F.; Zhou, Y.; Miao, Y.E.; Wei, C.; Liu, T.X. Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-Doped carbon nanofibers for high-Performance asymmetric supercapacitors. Chem. Eng. J. 2017, 328, 599–608. [Google Scholar]
  45. Liu, Y.P.; Li, Z.L.; Yao, L.; Chen, S.M.; Zhang, P.X.; Deng, L.B. Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chem. Eng. J. 2019, 366, 550–559. [Google Scholar]
  46. Wang, Q.H.; Gao, F.; Xu, B.Y.; Cai, F.X.; Zhan, F.P.; Gao, F.; Wang, Q.X. ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-Performance asymmetric supercapacitor. Chem. Eng. J. 2017, 327, 387–396. [Google Scholar]
  47. Zhang, P.; Guan, B.Y.; Yu, L.; Lou, X.W. Formation of Double-Shelled Zinc–Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors. Angew. Chem. Int. Ed. 2017, 56, 7141–7145. [Google Scholar]
  48. Shang, W.X.; Yu, W.T.; Tan, P.; Chen, B.; Xu, H.R.; Ni, M. A high-Performance Zn battery based on self-Assembled nanostructured NiCo2O4 electrode. J. Power Sources 2019, 421, 6–13. [Google Scholar]
  49. Zhang, H.; Zhang, X.; Li, H.; Zhang, Y.; Zeng, Y.; Tong, Y.; Zhang, P.; Lu, X. Flexible rechargeable Ni//Zn battery based on self-Supported NiCo2O4 nanosheets with high power density and good cycling stability. Green Energy Environ. 2018, 3, 56–62. [Google Scholar]
  50. Wen, J.; Feng, Z.; Liu, H.R.; Chen, T.; Yang, Y.Q.; Li, S.Z.; Sheng, S.; Fang, G.J. In-Situ synthesized Ni2P nanosheet arrays as the cathode for novel alkaline Ni//Zn rechargeable battery. Appl. Surf. Sci. 2019, 485, 462–467. [Google Scholar]
  51. Wang, X.W.; Wang, F.X.; Wang, L.Y.; Li, M.X.; Wang, Y.F.; Chen, B.W.; Zhu, Y.S.; Fu, L.J.; Zha, L.S.; Zhang, L.X.; et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 2016, 28, 4904–4911. [Google Scholar] [PubMed]
  52. Wang, X.W.; Li, M.X.; Wang, Y.F.; Chen, B.W.; Zhu, Y.S.; Wu, Y.P. A Zn–NiO rechargeable battery with long lifespan and high energy density. J. Mater. Chem. A 2015, 3, 8280–8283. [Google Scholar]
  53. Hu, P.; Wang, T.S.; Zhao, J.W.; Zhang, C.J.; Ma, J.; Du, H.P.; Wang, X.G.; Cui, G.L. Ultrafast Alkaline Ni/Zn Battery Based on Ni-Foam-Supported Ni3S2 Nanosheets. ACS Appl. Mater. Interfaces 2015, 7, 26396–26399. [Google Scholar] [CrossRef] [PubMed]
  54. Jian, Y.; Wang, D.M.; Huang, M.Z.; Jia, H.L.; Sun, J.H.; Song, X.K.; Guan, M.Y. Facile Synthesis of Ni(OH)2/Carbon Nanofiber Composites for Improving NiZn Battery Cycling Life. ACS Sustain. Chem. Eng. 2017, 5, 6827–6834. [Google Scholar]
  55. Zhang, D.J.; Zhang, J.C.; Li, J.Q.; Li, C.X.; Li, Y.T.; Liu, Y.Y.; Zhang, R.C. Facile synthesis of mesoporous NixCo9-xS8 hollow spheres for high-Performance supercapacitors and aqueous Ni/Co–Zn batteries. RSC Adv. 2022, 12, 20447–20453. [Google Scholar]
  56. Lai, C.W.; Wang, Y.X.; Fu, L.; Song, H.X.; Liu, B.; Pan, D.; Guo, Z.H.; Seok, I.; Li, K.W.; Zhang, H.R.; et al. Aqueous flexible all-Solid-State NiCo-Zn batteries with high capacity based on advanced ion-Buffering reservoirs of NiCo2O4. Adv. Compos. Hybrid Mater. 2022, 5, 536–546. [Google Scholar]
  57. Yang, F.; Zhang, K.; Cen, Z.; Xu, K.B. Rational construction of multidimensional oxygen-Deficient Co3O4 nanosheet/nanowire arrays as high-Performance electrodes for aqueous Zn-Ion batteries and asymmetric supercapacitors. J. Alloy. Compd. 2021, 879, 160439. [Google Scholar]
  58. Cen, Z.; Yang, F.; Wan, J.; Xu, K.B. The in situ construction of oxygen-Vacancy-Rich NiCo2S4@NiMoO4/Ni2P multilevel nanoarrays for high-Performance aqueous Zn-Ion batteries. New J. Chem. 2022, 46, 6587–6595. [Google Scholar]
  59. Jiang, L.L.; Li, L.; Luo, S.; Xu, H.; Xia, L.Y.; Wang, H.K.; Liu, X.G.; Wu, Y.Q.; Qing, Y. Configuring hierarchical Ni/NiO 3D-Network assisted with bamboo cellulose nanofibers for high-Performance Ni–Zn aqueous batteries. Nanoscale 2020, 12, 14651. [Google Scholar]
  60. Peng, Z.W.; Yang, C.; Zhao, Q.Y.; Liang, F.L.; Yun, S.L.; Liu, R.; Zhang, Z.Q.; Liao, Y.X.; Chen, H.C. Ultra-Dispersed nickel–cobalt sulfides on reduced graphene oxide with improved power and cycling performances for nickel-Zinc batteries. J. Colloid Interface Sci. 2022, 607, 61–67. [Google Scholar]
Scheme 1. The synthesis route for Ni0.9Co2.1S4, Ni1.8Co1.2S4, Ni2.5Co0.5S4, and Ni2.5Co0.5S4-350 microspheres.
Scheme 1. The synthesis route for Ni0.9Co2.1S4, Ni1.8Co1.2S4, Ni2.5Co0.5S4, and Ni2.5Co0.5S4-350 microspheres.
Nanomaterials 12 02994 sch001
Figure 1. SEM images, EDS element mapping and EDS of (a,d,g) Ni0.9Co2.1S4, (b,e,h) Ni1.8Co1.2S4, and (c,f,i) Ni2.5Co0.5S4 microspheres.
Figure 1. SEM images, EDS element mapping and EDS of (a,d,g) Ni0.9Co2.1S4, (b,e,h) Ni1.8Co1.2S4, and (c,f,i) Ni2.5Co0.5S4 microspheres.
Nanomaterials 12 02994 g001
Figure 2. SEM images of Ni2.5Co0.5S4-350 microspheres in (a) low and (b) high magnification, TEM images of Ni2.5Co0.5S4-350 microspheres in (c) low and (d) high magnification, (e) EDS elemental mapping images, and (f) HRTEM image.
Figure 2. SEM images of Ni2.5Co0.5S4-350 microspheres in (a) low and (b) high magnification, TEM images of Ni2.5Co0.5S4-350 microspheres in (c) low and (d) high magnification, (e) EDS elemental mapping images, and (f) HRTEM image.
Nanomaterials 12 02994 g002
Figure 3. (a) XRD patterns of NixCo3−xS4 series samples obtained by solvothermal process, (b) XRD pattern of Ni2.5Co0.5S4-350 microspheres, isothermal plot, and pore size distribution of (c) Ni2.5Co0.5S4, and (d) Ni2.5Co0.5S4-350 microspheres.
Figure 3. (a) XRD patterns of NixCo3−xS4 series samples obtained by solvothermal process, (b) XRD pattern of Ni2.5Co0.5S4-350 microspheres, isothermal plot, and pore size distribution of (c) Ni2.5Co0.5S4, and (d) Ni2.5Co0.5S4-350 microspheres.
Nanomaterials 12 02994 g003
Figure 4. XPS spectra of Co0.5Ni2.5S4 microspheres and its sintered derivative at 350 ℃ (Co0.5Ni2.5S4-350), (a) XPS survey, the high resolution spectra of (b) Co 2p, (c) Ni 2p, and (d) S 2p.
Figure 4. XPS spectra of Co0.5Ni2.5S4 microspheres and its sintered derivative at 350 ℃ (Co0.5Ni2.5S4-350), (a) XPS survey, the high resolution spectra of (b) Co 2p, (c) Ni 2p, and (d) S 2p.
Nanomaterials 12 02994 g004
Figure 5. (a) Comparison of CV curves for NixCo3−xS4 samples at 10 mV s1, (b) GCD curves of NixCo3−xS4 samples at 2 A g−1, (c) specific capacitances of NixCo3−xS4 samples at different current densities, and (d) the cycling performance of series electrodes at 4 A g1.
Figure 5. (a) Comparison of CV curves for NixCo3−xS4 samples at 10 mV s1, (b) GCD curves of NixCo3−xS4 samples at 2 A g−1, (c) specific capacitances of NixCo3−xS4 samples at different current densities, and (d) the cycling performance of series electrodes at 4 A g1.
Nanomaterials 12 02994 g005
Figure 6. (a) CV curves for Ni2.5Co0.5S4-350 sample at the range of 5-50 mVs1, (b) GCD curves and (c) specific capacitances of Ni2.5Co0.5S4-350 at different current densities, (d) the cycling performance at 4 A g1.
Figure 6. (a) CV curves for Ni2.5Co0.5S4-350 sample at the range of 5-50 mVs1, (b) GCD curves and (c) specific capacitances of Ni2.5Co0.5S4-350 at different current densities, (d) the cycling performance at 4 A g1.
Nanomaterials 12 02994 g006
Figure 7. (a) CV curves of Ni-Zn battery at different scan rates, (b) GCD curves at different current densities, (c) rate performances of the Ni2.5Co0.5S4-350//Zn battery, and (d) the cycling performance at 8 A g−1 over 1000 cycles.
Figure 7. (a) CV curves of Ni-Zn battery at different scan rates, (b) GCD curves at different current densities, (c) rate performances of the Ni2.5Co0.5S4-350//Zn battery, and (d) the cycling performance at 8 A g−1 over 1000 cycles.
Nanomaterials 12 02994 g007
Figure 8. (a) The column charts of diffusion and capacitive contribution percentage, (b) Ragone plot of Ni2.5Co0.5S4-350//Zn battery.
Figure 8. (a) The column charts of diffusion and capacitive contribution percentage, (b) Ragone plot of Ni2.5Co0.5S4-350//Zn battery.
Nanomaterials 12 02994 g008
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhang, D.; Jiang, B.; Li, C.; Bian, H.; Liu, Y.; Bu, Y.; Zhang, R.; Zhang, J. Facile Synthesis of NixCo3−xS4 Microspheres for High-Performance Supercapacitors and Alkaline Aqueous Rechargeable NiCo-Zn Batteries. Nanomaterials 2022, 12, 2994. https://doi.org/10.3390/nano12172994

AMA Style

Zhang D, Jiang B, Li C, Bian H, Liu Y, Bu Y, Zhang R, Zhang J. Facile Synthesis of NixCo3−xS4 Microspheres for High-Performance Supercapacitors and Alkaline Aqueous Rechargeable NiCo-Zn Batteries. Nanomaterials. 2022; 12(17):2994. https://doi.org/10.3390/nano12172994

Chicago/Turabian Style

Zhang, Daojun, Bei Jiang, Chengxiang Li, Hao Bian, Yang Liu, Yingping Bu, Renchun Zhang, and Jingchao Zhang. 2022. "Facile Synthesis of NixCo3−xS4 Microspheres for High-Performance Supercapacitors and Alkaline Aqueous Rechargeable NiCo-Zn Batteries" Nanomaterials 12, no. 17: 2994. https://doi.org/10.3390/nano12172994

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop