Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (802)

Search Parameters:
Keywords = micro/nanostructures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4879 KB  
Review
Recent Progress on the Healing Mechanisms of Self-Healing Superhydrophilic Surfaces
by Zhimeng Liu and Fatang Liu
Coatings 2025, 15(9), 1006; https://doi.org/10.3390/coatings15091006 - 31 Aug 2025
Viewed by 219
Abstract
Superhydrophilic surfaces have important applications in fields such as energy, military, and medicine due to their unique wettability. However, the micro-/nano-structures of superhydrophilic surfaces are fragile and prone to damage, which can cause them to lose their superhydrophilicity and reduce their service life, [...] Read more.
Superhydrophilic surfaces have important applications in fields such as energy, military, and medicine due to their unique wettability. However, the micro-/nano-structures of superhydrophilic surfaces are fragile and prone to damage, which can cause them to lose their superhydrophilicity and reduce their service life, severely limiting their applications. This paper discusses recent research progress and self-healing mechanisms of self-healing superhydrophilic surfaces from the perspectives of composition and structure self-healing. Additionally, it also introduces the research progress of superhydrophilic surfaces healed in air and underwater environments. Finally, the limitations of the self-healing superhydrophilic surfaces are summarized, and perspectives on future development are discussed. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
Preparation of Infrared Anti-Reflection Surfaces Based on Microcone Structures of Silicon Carbide
by Ruirui Li, Xiaozheng Ji, Sijia Chang, Haoyu Tian, Zihong Zhao and Chengqun Chu
Materials 2025, 18(17), 4054; https://doi.org/10.3390/ma18174054 - 29 Aug 2025
Viewed by 293
Abstract
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. [...] Read more.
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. To overcome these limitations, direct nanostructuring of SiC substrates has emerged as a promising alternative solution. This work introduces an innovative graded-index microcone array design fabricated on SiC substrates, achieving superior broadband anti-reflection performance. Our two-step fabrication methodology comprises plasma-induced formation of tunable nanofiber etch masks through controlled argon bombardment parameters, followed by precision reactive ion etching (RIE) for microcone array formation. By systematically varying plasma exposure duration, we demonstrate precise control over nanofiber mask morphology, which in turn enables the fabrication of height-optimized SiC microcone arrays. The resulting structures exhibit exceptional optical performance, achieving an ultra-low average reflectivity of 2.25% across the spectral range of 2.5–8 μm. This breakthrough fabrication technique not only extends the available toolbox for SiC micro/nanofabrication but also provides a robust platform for next-generation optical applications. Unlike conventional thin-film approaches, our nanostructuring method preserves the intrinsic mechanical and environmental durability of the SiC substrate while delivering a favorable optical performance. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

17 pages, 4189 KB  
Article
Preparation of Hydrophobic Glass Surfaces by Femtosecond Laser
by Xuyun Peng, Xiaojun Tan, Wei Tan, Jian Huang, Chaojun Ding, Yushan Yang, Jieshun Yang, Haitao Chen, Liang Guo and Qingmao Zhang
Micromachines 2025, 16(9), 988; https://doi.org/10.3390/mi16090988 - 28 Aug 2025
Viewed by 276
Abstract
Functional glass surfaces with tunable wettability are of growing interest in optical, biomedical, and architectural applications. In this study, we investigate the influence of femtosecond laser processing parameters—including power, scanning speed, and repetition rate—on the surface morphology, wettability, and optical properties of Panda [...] Read more.
Functional glass surfaces with tunable wettability are of growing interest in optical, biomedical, and architectural applications. In this study, we investigate the influence of femtosecond laser processing parameters—including power, scanning speed, and repetition rate—on the surface morphology, wettability, and optical properties of Panda glass. Laser structuring generated microscale ablation features and increased surface roughness (arithmetic mean height, Sa, rising from ~0.02 µm for pristine glass to ~1.85 µm under optimized conditions). The treated surfaces exhibited enhanced hydrophobicity, with static water contact angles up to ~82° and sliding angles exceeding 50°, indicating significant droplet pinning. Optical characterization further showed a reduction in transmittance at 550 nm from ~92% (pristine) to ~68% after laser treatment, consistent with increased scattering by surface textures. These findings demonstrate that femtosecond laser processing is an effective mask-free method to enhance the hydrophobicity of glass surfaces and establish clear process–structure–property relationships, providing guidance for future optimization toward superhydrophobic performance. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

16 pages, 3543 KB  
Article
Multifunctional PDMS Composite Coating for Advanced Anti-Icing with Concurrent Mechanical Durability and Corrosion Protection
by Zaixiang Zheng, Shutong Wu, Jiawei Luo, Shengnan Yang, Junnan Cui, Zhimin Cao and Pan Cao
Coatings 2025, 15(8), 979; https://doi.org/10.3390/coatings15080979 - 21 Aug 2025
Viewed by 388
Abstract
Ice accretion on critical transportation infrastructure presents serious operational risks and economic challenges, highlighting the need for sustainable anti-icing solutions. This study develops a strong PDMS-based composite coating on aluminum by incorporating carbon nanotubes (CNTs) and carbon powder, effectively merging passive superhydrophobicity with [...] Read more.
Ice accretion on critical transportation infrastructure presents serious operational risks and economic challenges, highlighting the need for sustainable anti-icing solutions. This study develops a strong PDMS-based composite coating on aluminum by incorporating carbon nanotubes (CNTs) and carbon powder, effectively merging passive superhydrophobicity with photothermal capabilities. We systematically assess how different ratios of CNTs to carbon powder (3:1, 1:1, 1:3) influence surface morphology, wettability, anti-icing performance, mechanical durability, and corrosion resistance. The morphological analysis shows the formation of hierarchical micro/nano-structures, with the optimal 1:3 ratio (designated as P13) resulting in dense, porous agglomerates of intertwined CNTs and carbon powder. P13 demonstrates high-performing superhydrophobicity, with a contact angle of 139.7° and a sliding angle of 9.4°, alongside a significantly extended freezing delay of 180 s at −20 °C. This performance is attributed to reduced water–surface interaction and inhibited ice nucleation. Mechanical abrasion tests indicate remarkable durability, as P13 retains a contact angle of 132.5° and consistent anti-icing properties after enduring 100 abrasion cycles. Electrochemical analysis reveals exceptional corrosion resistance, particularly for P13, which achieves a notable 99.66% corrosion inhibition efficiency by creating a highly tortuous diffusion barrier that protects against corrosive agents. This multifunctional coating effectively utilizes the photothermal properties of CNTs, the affordability of carbon powder, the low surface energy of PDMS, and the thermal conductivity of aluminum, presenting a robust and high-performance solution for anti-icing applications in challenging environments. Full article
(This article belongs to the Special Issue Development and Application of Anti/De-Icing Surfaces and Coatings)
Show Figures

Graphical abstract

33 pages, 15534 KB  
Article
Surface Microstructural Responses of Heterogeneous Green Schist to Femtosecond Laser Grooving with Varying Process Parameters
by Chengaonan Wang, Kai Li, Xianshi Jia, Cong Wang, Yansong Wang and Zheng Yuan
Materials 2025, 18(16), 3751; https://doi.org/10.3390/ma18163751 - 11 Aug 2025
Viewed by 325
Abstract
The Mount Wudang architectural complex, recognized as a UNESCO World Cultural Heritage site, extensively utilizes green schist as the building material in its rock temple structures. Due to prolonged exposure to weathering and moisture, effective surface protection of these stones is crucial for [...] Read more.
The Mount Wudang architectural complex, recognized as a UNESCO World Cultural Heritage site, extensively utilizes green schist as the building material in its rock temple structures. Due to prolonged exposure to weathering and moisture, effective surface protection of these stones is crucial for their preservation. Inspired by the lotus leaf, femtosecond laser fabrication of bioinspired micro/nanostructures offers a promising approach for imparting hydrophobicity to stone surfaces. However, green schist is a typical heterogeneous material primarily composed of quartz, chlorite, and muscovite, and it contains metal elements, such as Fe and Ni. These pronounced compositional differences complicate laser–material interactions, posing considerable challenges to the formation of stable and uniform micro/nanostructures. To address this issue, we performed systematic femtosecond laser scanning experiments on green schist surfaces using a 100 kHz, 40 μJ laser with a 30 μm spot diameter, fabricating microgrooves under various process conditions. Surface morphology and EDS mapping analyses were conducted to elucidate the ablation responses of quartz, chlorite, and muscovite under different groove spacings (100 μm, 80 μm, 60 μm, and 40 μm) and scan repetitions (1, 2, 4, 6, 8, 10). The results revealed distinct differences in energy absorption, material ejection, and surface reorganization among these minerals, significantly influencing the formation mechanisms of laser-induced structures. Based on optimized parameters (60 μm spacing, 2–6 passes), robust and repeatable micro/nanostructures were successfully produced, yielding superhydrophobic performance with contact angles exceeding 155°. This work offers a novel strategy for interface control in heterogeneous natural stone materials and provides a theoretical and technical foundation for the protection and functional modification of green schist in heritage conservation. Full article
(This article belongs to the Special Issue Application and Modification of Clay Minerals)
Show Figures

Figure 1

19 pages, 6153 KB  
Article
Copper–PLLA-Based Biopolymer Wrinkle Structures for Enhanced Antibacterial Activity
by Petr Slepička, Iva Labíková, Bára Frýdlová, Aneta Pagáčová, Nikola Slepičková Kasálková, Petr Sajdl and Václav Švorčík
Polymers 2025, 17(16), 2173; https://doi.org/10.3390/polym17162173 - 8 Aug 2025
Viewed by 451
Abstract
The increasing prevalence of antibiotic-resistant bacteria has intensified the need for innovative antibacterial surfaces, particularly in biomedical applications. Traditional approaches often rely on chemical agents alone, which may lead to diminishing efficacy over time. To address this, we investigated the development of a [...] Read more.
The increasing prevalence of antibiotic-resistant bacteria has intensified the need for innovative antibacterial surfaces, particularly in biomedical applications. Traditional approaches often rely on chemical agents alone, which may lead to diminishing efficacy over time. To address this, we investigated the development of a novel antibacterial surface by combining the inherent antimicrobial properties of copper with an engineered surface topography on a biopolymer matrix. A copper–poly-L-lactic acid (Cu-PLLA) composite system was fabricated using sputtering deposition followed by controlled thermal treatment to induce wrinkle-like micro- and nanostructures on the surface. The surface morphology was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), confirming the formation of hierarchical wrinkle patterns. The chemical composition and distribution of copper were analyzed via energy-dispersive X-ray spectroscopy (EDS). Antibacterial performance was assessed against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus using standard colony count reduction assays. The Cu-PLLA wrinkled surfaces demonstrated significantly enhanced bactericidal activity compared with flat PLLA and copper-free controls, a finding attributed to a synergistic effect of mechanical membrane disruption and copper-mediated chemical toxicity. These findings suggest that biopolymer–metal hybrid surfaces with engineered topography offer a promising strategy for developing next-generation antibacterial materials suitable for biomedical and clinical use. Full article
(This article belongs to the Special Issue Feature Papers in Polymer Science and Technology)
Show Figures

Graphical abstract

35 pages, 1395 KB  
Review
Local Chemotherapy of Skin Pre-Neoplastic Lesions and Malignancies from the Perspective of Current Pharmaceutics
by Nadezhda Ivanova
Pharmaceutics 2025, 17(8), 1009; https://doi.org/10.3390/pharmaceutics17081009 - 1 Aug 2025
Viewed by 878
Abstract
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while [...] Read more.
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while several other active pharmaceutical ingredients (APIs) (e.g., calcipotriol, tretinoin, diclofenac) have been repurposed, used off-label, or are currently being investigated in mono- or combined chemotherapies of skin cancers. Apart from them, dozens to hundreds of therapeutics of natural and synthetic origin are proven to possess anti-tumor activity against melanoma, squamous cell carcinoma (SCC), and other skin cancer types in in vitro studies. Their clinical introduction is most often limited by low skin permeability, challenged targeted drug delivery, insufficient chemical stability, non-selective cytotoxicity, or insufficient safety data. A variety of prodrug and nanotechnological approaches, including vesicular systems, micro- and nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, and others, offer versatile solutions for overcoming the biophysical barrier function of the skin and the undesirable physicochemical nature of some drug molecules. This review aims to present the most significant aspects and latest achievements on the subject. Full article
Show Figures

Figure 1

12 pages, 16238 KB  
Article
Degradation of HVOF-MCrAlY + APS-Nanostructured YSZ Thermal Barrier Coatings
by Weijie R. Chen, Chao Li, Yuxian Cheng, Hongying Li, Xiao Zhang and Lu Wang
Coatings 2025, 15(8), 871; https://doi.org/10.3390/coatings15080871 - 24 Jul 2025
Viewed by 408
Abstract
The degradation process of HVOF-MCrAlY + APS-nanostructured YSZ (APS-nYSZ) thermal barrier coatings, produced using gas turbine OEM-approved MCrAlY powders, is investigated by studying the TGO growth and crack propagation behaviors in a thermal cycling environment. The TGO growth yields a parabolic mechanism on [...] Read more.
The degradation process of HVOF-MCrAlY + APS-nanostructured YSZ (APS-nYSZ) thermal barrier coatings, produced using gas turbine OEM-approved MCrAlY powders, is investigated by studying the TGO growth and crack propagation behaviors in a thermal cycling environment. The TGO growth yields a parabolic mechanism on the surfaces of all HVOF-MCrAlYs, and the growth rate increases with the aluminum content in the “classical” MCrAlYs. The APS-nYSZ layer comprises micro-structured YSZ (mYSZ) and nanostructured YSZ (nYSZ) zones. Both mYSZ/mYSZ and mYSZ/nYSZ interfaces appear to be crack nucleation sites, resulting in crack propagation and consequent crack coalescence within the APS-nYSZ layer in the APS-nYSZ/HVOF-MCrAlY vicinity. Crack propagation in the TBCs can be characterized as a steady-state crack propagation stage, where crack length has a nearly linear relationship with TGO thickness, and an accelerating crack propagation stage, which is apparently a result of the coalescence of neighboring cracks. All TBCs fail in the same way as APS-/HVOF-MCrAlY + APS-conventional YSZ analogs, but the difference in thermal cycling lives is not substantial, although the HVOF-low Al-NiCrAlY encounters chemical failure in the early stage of thermal cycling. Full article
Show Figures

Figure 1

19 pages, 3112 KB  
Article
Durable Superhydrophobic Composite Coating Based on Hydrangea-like SiO2 Nanoparticles with Excellent Performance in Anticorrosion, Drag Reduction, and Antifouling
by Yuhao Xue, Yamei Zhao, Xiaoqi Gu, Mengdan Huo, Kunde Yang, Mingyu Liu, Sixian Fan and Maoyong Zhi
Materials 2025, 18(15), 3443; https://doi.org/10.3390/ma18153443 - 23 Jul 2025
Viewed by 390
Abstract
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic [...] Read more.
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic coating featuring a hierarchical, hydrangea-like micro/nanostructure was successfully fabricated on an aluminum alloy substrate via a simple one-step cold-spraying technique. The coating consisted of hydrangea-shaped SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDT) to produce multiscale roughness, while epoxy resin (EP) served as the binding matrix to enhance mechanical integrity. The hydrangea-like SiO2 nanostructures were characterized by solid cores and wrinkled, petal-like outgrowths. This unique morphology not only increased the surface roughness but also provided more active sites for air entrapment, thereby enhancing the coating’s overall performance. The h-SiO2@PFDT-EP composite coating exhibited excellent superhydrophobicity, with a WCA of 170.1° ± 0.8° and a SA of 2.7° ± 0.5°. Durability was evaluated through sandpaper abrasion, tape peeling, acid and alkali immersion, artificial weathering, and salt spray tests. The results demonstrated that the coating retained stable superhydrophobic performance under various environmental stresses. Compared with bare 6061 aluminum and EP coatings, its corrosion current density was reduced by four and three orders of magnitude, respectively. Furthermore, the coating achieved a maximum drag-reduction rate of 31.01% within a velocity range of 1.31–7.86 m/s. The coating also displayed excellent self-cleaning properties. Owing to its outstanding durability, corrosion resistance, and drag-reducing capability, this one-step fabricated superhydrophobic coating showed great promise for applications in marine engineering and defense. Full article
Show Figures

Figure 1

33 pages, 5578 KB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 995
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

36 pages, 7153 KB  
Review
Enhancing the Biological Functionality of Hydrogels Using Self-Assembling Peptides
by Woo Hyun Kwon, Kyoung Choi, Sang Jun Park, GeumByeol Park, Cho Young Park, Yoo Han Seo, Chun-Ho Kim and Jun Shik Choi
Biomimetics 2025, 10(7), 442; https://doi.org/10.3390/biomimetics10070442 - 4 Jul 2025
Viewed by 979
Abstract
Hydrogels are ECM-mimicking three-dimensional (3D) networks that are widely used in biomedical applications; however, conventional natural and synthetic polymer-based hydrogels present limitations such as poor mechanical strength, limited bioactivity, and low reproducibility. Self-assembling peptides (SAPs) offer a promising alternative, as they can form [...] Read more.
Hydrogels are ECM-mimicking three-dimensional (3D) networks that are widely used in biomedical applications; however, conventional natural and synthetic polymer-based hydrogels present limitations such as poor mechanical strength, limited bioactivity, and low reproducibility. Self-assembling peptides (SAPs) offer a promising alternative, as they can form micro- and nanostructured hydrogels through non-covalent interactions and allow precise control over their biofunctionality, mechanical properties, and responsiveness to biological cues. Through rational sequence design, SAPs can be engineered to exhibit tunable mechanical properties, controlled degradation rates, and multifunctionality, and can dynamically regulate assembly and degradation in response to specific stimuli such as pH, ionic strength, enzymatic cleavage, or temperature. Furthermore, SAPs have been successfully incorporated into conventional hydrogels to enhance cell adhesion, promote matrix remodeling, and provide a more physiologically relevant microenvironment. In this review, we summarize recent advances in SAP-based hydrogels, particularly focusing on their novel biofunctional properties such as anti-inflammatory, antimicrobial, and anticancer activities, as well as bioimaging capabilities, and discuss the mechanisms by which SAP hydrogels function in biological systems. Full article
Show Figures

Figure 1

12 pages, 9598 KB  
Article
Hydrothermal Calcification of Sand-Blasted/Acid-Etched Titanium with Improved Corrosion Resistance and Cytocompatibility
by Yijing Mu, Kai Hua, Zeying Liu, Yantao Zhao, Hongling Fan and Tao Fu
Coatings 2025, 15(7), 771; https://doi.org/10.3390/coatings15070771 - 29 Jun 2025
Viewed by 330
Abstract
Preparing a bioactive surface with a hierarchical micro/nanostructure can improve the osseointegration of titanium implants. In this study, titanium was sand blasted and etched in H2SO4 solution to obtain micro-rough morphology. The samples were then hydrothermally treated in the concentrated [...] Read more.
Preparing a bioactive surface with a hierarchical micro/nanostructure can improve the osseointegration of titanium implants. In this study, titanium was sand blasted and etched in H2SO4 solution to obtain micro-rough morphology. The samples were then hydrothermally treated in the concentrated CaHPO4 solution at 120–200 °C for 24 h to grow films consisting of anatase TiO2 and hydroxyapatite nanoparticles (size 80–240 nm). The hydrothermally calcified (200 °C) sample exhibited much better corrosion resistance in the salt solution, as well as similar cellular viability and a higher alkaline phosphatase level in the cell tests using MC3T3-E1 cells, in comparison with the polished titanium sample. The hybrid treatment is a facile and effective method to a form bioactive surface with a hierarchical micro/nanostructure on titanium. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Graphical abstract

15 pages, 4096 KB  
Article
Fs-Laser-Induced Micro- and Nanostructures on Polycarbonate and Cellulose Acetate Butyrate for Cell Alignment
by Lukas Wagner, Werner Baumgartner, Agnes Weth, Sebastian Lifka and Johannes Heitz
Appl. Sci. 2025, 15(12), 6754; https://doi.org/10.3390/app15126754 - 16 Jun 2025
Viewed by 449
Abstract
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type [...] Read more.
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type of glial cell that can support the regeneration of nerve pathways by guiding the neuronal axons in the direction of their alignment. Polymer surfaces, i.e., polycarbonate (PC) or cellulose acetate butyrate (CAB), were exposed to the beam of a 1040 nm Yb-based amplified fs-laser system with a pulse length of about 350 fs. With appropriate parameters, the laser exposure resulted in a surface topography with oriented micro-grooves, which, for PC, were covered with nano-ripples. Schwann cell growth on these substrates was inspected after 3 to 5 days of cultivation by means of scanning electron microscopy (SEM). We show that Schwann cells can grow in a certain direction, predetermined by micro-groove or nano-ripple orientation. In contrast, cells cultivated on randomly oriented nanofibers or unstructured surfaces show an omnidirectional growth behavior. This method may be used in the future to produce nerve conduits for the treatment of injuries to the peripheral nervous system. Full article
(This article belongs to the Special Issue Ultrafast and Nonlinear Laser Applications)
Show Figures

Figure 1

5 pages, 169 KB  
Editorial
Advanced Manufacturing on Nano- and Microscale
by Ruifeng Zhang, Qifeng Ruan, Hao Wang and Yujie Ke
Nanomaterials 2025, 15(11), 852; https://doi.org/10.3390/nano15110852 - 2 Jun 2025
Viewed by 437
Abstract
Micro- and nanostructures often display unique characteristics that significantly differ from those of bulk materials [...] Full article
(This article belongs to the Special Issue Advanced Manufacturing on Nano- and Microscale)
24 pages, 7561 KB  
Article
Mechanism of Strain-Resistance Response of CNT/Polymer Composite Materials for Pavement Strain Self-Sensing Based on the Molecular Dynamics Simulation Method
by Xue Xin, Xingchi Zhao, Jing Gao, Zhanyong Yao and Yunzhen Li
Polymers 2025, 17(11), 1427; https://doi.org/10.3390/polym17111427 - 22 May 2025
Viewed by 532
Abstract
Embedded and real-time monitoring of pavement mechanical state changes based on the strain detected by self-sensing sensors of polymer/conductive composites is a new way for pavement health monitoring. Strain monitoring, using polymer-based composite mechanosensitive materials, requires the formation of effective conductive networks and [...] Read more.
Embedded and real-time monitoring of pavement mechanical state changes based on the strain detected by self-sensing sensors of polymer/conductive composites is a new way for pavement health monitoring. Strain monitoring, using polymer-based composite mechanosensitive materials, requires the formation of effective conductive networks and conductive channels within the composite material so that the mechanosensitive material is electrically conductive at the macroscopic level. However, the deformation of the pavement structure is much smaller in magnitude, which is about hundreds or even tens of microstrains (10−6). Therefore, it is especially important to study the strain self-sensing mechanism of conductive composites at the με level. Micro- and nanostructured polymer composites have a complex structure with multiple layers, scales, and interactions, and thus present many difficulties when studying their microscopic conductive mechanisms. In this paper, the all-atom system of the micro-nanostructured composite mechanosensitive materials model was proposed with the help of molecular dynamics simulations. This achieved a breakthrough and realized the systematic study of the microscopic level of the relevant parameters of the composite’s conductivity from the molecular point of view to construct a relationship between the microscopic parameters, conductive network, and conductivity. The kinetic models of the micro-nanostructure and resin interface based on the molecular dynamics simulation technology were constructed to explore the dispersion state of the conductive filler, the interfacial interactions between the conductive filler and epoxy resin matrix, and the structural changes in the conductive network within the system under the tension state. Full article
Show Figures

Figure 1

Back to TopTop