Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphological and Structural Assessment
3.2. Optical and Electrical Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar Cell Efficiency Tables (Version 59). Prog. Photovolt. Res. Appl. 2022, 30, 3–12. [Google Scholar] [CrossRef]
- Saule-Technologies Saule Technologies Perovskite Cells Hits Impressive 25.5% Efficiency. Available online: https://sauletech.com/saule-technologies-perovskite-cells-hits-impressive-25-5-efficiency/ (accessed on 20 February 2022).
- Nakamura, M.; Yamaguchi, K.; Kimoto, Y.; Yasaki, Y.; Kato, T.; Sugimoto, H. Cd-Free Cu(In,Ga)(Se,S) 2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE J. Photovolt. 2019, 9, 1863–1867. [Google Scholar] [CrossRef]
- Roselund, C. First Solar Sets New Cadmium Telluride Thin-Film Cell Efficiency Record at 22.1%. Available online: https://www.pv-magazine.com/2016/02/23/first-solar-sets-new-cadmium-telluride-thin-film-cell-efficiency-record-at-22-1_100023341/ (accessed on 20 February 2022).
- Centeno, P.; Alexandre, M.F.; Chapa, M.; Pinto, J.V.; Deuermeier, J.; Mateus, T.; Fortunato, E.; Martins, R.; Águas, H.; Mendes, M.J. Self-Cleaned Photonic-Enhanced Solar Cells with Nanostructured Parylene-C. Adv. Mater. Interfaces 2020, 7, 2000264. [Google Scholar] [CrossRef]
- Alexandre, M.; Chapa, M.; Haque, S.; Mendes, M.J.; Águas, H.; Fortunato, E.; Martins, R. Optimum Luminescent Down-Shifting Properties for High Efficiency and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2019, 2, 2930–2938. [Google Scholar] [CrossRef]
- Boane, J.L.N.; Centeno, P.; Mouquinho, A.; Alexandre, M.; Calmeiro, T.; Fortunato, E.; Martins, R.; Mendes, M.J.; Águas, H. Soft-Microstructured Transparent Electrodes for Photonic-Enhanced Flexible Solar Cells. Micro 2021, 1, 215–227. [Google Scholar] [CrossRef]
- Haque, S.; Alexandre, M.; Baretzky, C.; Rossi, D.; De Rossi, F.; Vicente, A.T.; Brunetti, F.; Águas, H.; Ferreira, R.A.S.; Fortunato, E.; et al. Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis. ACS Photonics 2022, 9, 2408–2421. [Google Scholar] [CrossRef]
- Oliveira, R.D.; Mouquinho, A.; Centeno, P.; Alexandre, M.; Haque, S.; Martins, R.; Fortunato, E.; Águas, H.; Mendes, M.J. Colloidal Lithography for Photovoltaics: An Attractive Route for Light Management. Nanomaterials 2021, 11, 1665. [Google Scholar] [CrossRef]
- Oliveira, A.J.N.; Teixeira, J.P.; Ramos, D.; Fernandes, P.A.; Salomé, P.M.P. Exploiting the Optical Limits of Thin-Film Solar Cells: A Review on Light Management Strategies in Cu(In,Ga)Se 2. Adv. Photonics Res. 2022, 3, 2100190. [Google Scholar] [CrossRef]
- Alexandre, M.; Águas, H.; Fortunato, E.; Martins, R.; Mendes, M.J. Light Management with Quantum Nanostructured Dots-in-Host Semiconductors. Light Sci. Appl. 2021, 10, 231. [Google Scholar] [CrossRef]
- Menda, U.D.; Ribeiro, G.; Nunes, D.; Calmeiro, T.; Águas, H.; Fortunato, E.; Martins, R.; Mendes, M.J. High-Performance Wide Bandgap Perovskite Solar Cells Fabricated in Ambient High-Humidity Conditions. Mater. Adv. 2021, 2, 6344–6355. [Google Scholar] [CrossRef]
- McClary, S.A.; Li, S.; Yin, X.; Dippo, P.; Kuciauskas, D.; Yan, Y.; Baxter, J.B.; Agrawal, R. Optoelectronic Characterization of Emerging Solar Absorber Cu 3 AsS 4. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; IEEE: New York, NY, USA; pp. 2310–2314. [Google Scholar]
- Yang, B.; Wang, L.; Han, J.; Zhou, Y.; Song, H.; Chen, S.; Zhong, J.; Lv, L.; Niu, D.; Tang, J. CuSbS 2 as a Promising Earth-Abundant Photovoltaic Absorber Material: A Combined Theoretical and Experimental Study. Chem. Mater. 2014, 26, 3135–3143. [Google Scholar] [CrossRef]
- Islam, F.; Yatim, N.; Hashim, M.A. A Review of CZTS Thin Film Solar Cell Technology. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 81, 73–87. [Google Scholar] [CrossRef]
- Gokmen, T.; Gunawan, O.; Todorov, T.K.; Mitzi, D.B. Band Tailing and Efficiency Limitation in Kesterite Solar Cells. Appl. Phys. Lett. 2013, 103, 103506. [Google Scholar] [CrossRef]
- Kumar, M.; Dubey, A.; Adhikari, N.; Venkatesan, S.; Qiao, Q. Strategic Review of Secondary Phases, Defects and Defect-Complexes in Kesterite CZTS–Se Solar Cells. Energy Environ. Sci. 2015, 8, 3134–3159. [Google Scholar] [CrossRef]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2013, 4, 1301465. [Google Scholar] [CrossRef]
- Maske, S.; Skinner, B.J. Studies of the Sulfosalts of Copper; I, Phases and Phase Relations in the System Cu-As-S. Econ. Geol. 1971, 66, 901–918. [Google Scholar] [CrossRef]
- Levinsky, P.; Candolfi, C.; Dauscher, A.; Tobola, J.; Hejtmánek, J.; Lenoir, B. Thermoelectric Properties of the Tetrahedrite–Tennantite Solid Solutions Cu 12 Sb 4−x As x S 13 and Cu 10 Co 2 Sb 4−y As y S 13 (0 ≤ x, y ≤ 4). Phys. Chem. Chem. Phys. 2019, 21, 4547–4555. [Google Scholar] [CrossRef]
- Yu, L.; Kokenyesi, R.S.; Keszler, D.A.; Zunger, A. Inverse Design of High Absorption Thin-Film Photovoltaic Materials. Adv. Energy Mater. 2013, 3, 43–48. [Google Scholar] [CrossRef]
- Shi, T.; Yin, W.-J.; Al-Jassim, M.; Yan, Y. Structural, Electronic, and Optical Properties of Cu 3 -V-VI 4 Compound Semiconductors. Appl. Phys. Lett. 2013, 103, 152105. [Google Scholar] [CrossRef]
- Muslih, E.Y.; Munir, B.; Khan, M.M. Advances in chalcogenides and chalcogenides-based nanomaterials such as sulfides, Selenides, and tellurides. In Chalcogenide-Based Nanomaterials as Photocatalysts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 7–31. [Google Scholar]
- McClary, S.A.; Agrawal, R. Synthesis and Characterization of Semiconducting Sinnerite (Cu6As4S9) Thin Films. MRS Commun. 2020, 10, 188–193. [Google Scholar] [CrossRef]
- Pauporté, T.; Lincot, D. Electrical, Optical and Photoelectrochemical Properties of Natural Enargite, Cu3AsS4. Adv. Mater. Opt. Electron. 1995, 5, 289–298. [Google Scholar] [CrossRef]
- Wallace, S.K.; Svane, K.L.; Huhn, W.P.; Zhu, T.; Mitzi, D.B.; Blum, V.; Walsh, A. Candidate Photoferroic Absorber Materials for Thin-Film Solar Cells from Naturally Occurring Minerals: Enargite, Stephanite, and Bournonite. Sustain. Energy Fuels 2017, 1, 1339–1350. [Google Scholar] [CrossRef]
- Balow, R.B.; Sheets, E.J.; Abu-Omar, M.M.; Agrawal, R. Synthesis and Characterization of Copper Arsenic Sulfide Nanocrystals from Earth Abundant Elements for Solar Energy Conversion. Chem. Mater. 2015, 27, 2290–2293. [Google Scholar] [CrossRef]
- Balow, R.B.; Miskin, C.K.; Abu-Omar, M.M.; Agrawal, R. Synthesis and Characterization of Cu 3 (Sb 1– x As x)S 4 Semiconducting Nanocrystal Alloys with Tunable Properties for Optoelectronic Device Applications. Chem. Mater. 2016, 29, 573–578. [Google Scholar] [CrossRef]
- McClary, S.A.; Andler, J.; Handwerker, C.A.; Agrawal, R. Solution-Processed Copper Arsenic Sulfide Thin Films for Photovoltaic Applications. J. Mater. Chem. C 2017, 5, 6913–6916. [Google Scholar] [CrossRef]
- Andler, J.; Hu, X.; McClary, S.A.; Agrawal, R.; Handwerker, C.A. Analysis of Enargite Thin Films Synthesized from Carbon-Containing and Novel Carbon-Free Processing Methods. Mater. Sci. Semicond. Process. 2022, 143, 106512. [Google Scholar] [CrossRef]
- McClary, S.A.; Taheri, M.M.; Blach, D.D.; Pradhan, A.A.; Li, S.; Huang, L.; Baxter, J.B.; Agrawal, R. Nanosecond Carrier Lifetimes in Solution-Processed Enargite (Cu3AsS4) Thin Films. Appl. Phys. Lett. 2020, 117, 162102. [Google Scholar] [CrossRef]
- Neves, F.; Esperto, L.; Figueira, I.; Mascarenhas, J.; Salgueiro, R.; Silva, T.P.; Correia, J.B.; Carvalho, P.A.; de Oliveira, D. Mechanochemical Synthesis of Tetrahedrite Materials Using Mixtures of Synthetic and Ore Samples Collected in the Portuguese Zone of the Iberian Pyrite Belt. Miner. Eng. 2021, 164, 106833. [Google Scholar] [CrossRef]
- Tchenka, A.; Agdad, A.; Samba Vall, M.C.; Hnawi, S.K.; Narjis, A.; Nkhaili, L.; Ibnouelghazi, E.; Ech-Chamikh, E. Effect of RF Sputtering Power and Deposition Time on Optical and Electrical Properties of Indium Tin Oxide Thin Film. Adv. Mater. Sci. Eng. 2021, 2021, 5556305. [Google Scholar] [CrossRef]
- Pereira, M.; Deuermeier, J.; Nogueira, R.; Carvalho, P.A.; Martins, R.; Fortunato, E.; Kiazadeh, A. Noble-Metal-Free Memristive Devices Based on IGZO for Neuromorphic Applications. Adv. Electron. Mater. 2020, 6, 2000242. [Google Scholar] [CrossRef]
- Huang, J.-H.; Chen, H.-H.; Liu, P.-S.; Lu, L.-S.; Wu, C.-T.; Chou, C.-T.; Lee, Y.-J.; Li, L.-J.; Chang, W.-H.; Hou, T.-H. Large-Area Few-Layer MoS 2 Deposited by Sputtering. Mater. Res. Express 2016, 3, 065007. [Google Scholar] [CrossRef]
- Sarkar, J. Sputtering and Thin Film Deposition. In Sputtering Materials for VLSI and Thin Film Devices; Elsevier: Amsterdam, The Netherlands, 2014; pp. 93–170. [Google Scholar]
- Lasch, P. Spectral Pre-Processing for Biomedical Vibrational Spectroscopy and Microspectroscopic Imaging. Chemom. Intell. Lab. Syst. 2012, 117, 100–114. [Google Scholar] [CrossRef]
- Ledinský, M.; Vetushka, A.; Stuchlík, J.; Mates, T.; Fejfar, A.; Kočka, J.; Štěpánek, J. Crystallinity of the Mixed Phase Silicon Thin Films by Raman Spectroscopy. J. Non Cryst. Solids 2008, 354, 2253–2257. [Google Scholar] [CrossRef]
- Ha, D.-H.; Caldwell, A.H.; Ward, M.J.; Honrao, S.; Mathew, K.; Hovden, R.; Koker, M.K.A.; Muller, D.A.; Hennig, R.G.; Robinson, R.D. Solid–Solid Phase Transformations Induced through Cation Exchange and Strain in 2D Heterostructured Copper Sulfide Nanocrystals. Nano Lett. 2014, 14, 7090–7099. [Google Scholar] [CrossRef]
- Ravele, M.P.; Oyewo, O.A.; Ramaila, S.; Mavuru, L.; Onwudiwe, D.C. Photocatalytic Degradation of Tetracycline in Aqueous Solution Using Copper Sulfide Nanoparticles. Catalysts 2021, 11, 1238. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, J.; Zhang, C.; Yang, W.; Fu, L.; Li, D.; Zhou, L. Understanding the Preferred Crystal Orientation of Sputtered Silver in Ar/N 2 Atmosphere: A Microstructure Investigation. Adv. Mater. Sci. Eng. 2019, 2019, 3079393. [Google Scholar] [CrossRef]
- Szopa, K.; Krzykawski, T.; Banasik, K.; Król, P.; Skreczko, S.; Mounteanou, S.A.; Koziarska, M. EMPA, XRD, and Raman Characterization of Ag-Bearing Djurleite from the Lubin Mine, Lower Silesia, Poland. Minerals 2021, 11, 454. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Zhang, Q.; Li, F. Controllable Synthesis and Enhanced Photocatalytic Properties of Cu2O/Cu31S16 Composites. Mater. Res. Bull. 2012, 47, 2631–2637. [Google Scholar] [CrossRef]
- Ramiro, I.; Kundu, B.; Dalmases, M.; Özdemir, O.; Pedrosa, M.; Konstantatos, G. Size- and Temperature-Dependent Intraband Optical Properties of Heavily n-Doped PbS Colloidal Quantum Dot Solid-State Films. ACS Nano 2020, 14, 7161–7169. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. Plasmonic Cu 2− x S Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. J. Am. Chem. Soc. 2009, 131, 4253–4261. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centeno, P.; Alexandre, M.; Neves, F.; Fortunato, E.; Martins, R.; Águas, H.; Mendes, M.J. Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaics. Nanomaterials 2022, 12, 3268. https://doi.org/10.3390/nano12193268
Centeno P, Alexandre M, Neves F, Fortunato E, Martins R, Águas H, Mendes MJ. Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaics. Nanomaterials. 2022; 12(19):3268. https://doi.org/10.3390/nano12193268
Chicago/Turabian StyleCenteno, Pedro, Miguel Alexandre, Filipe Neves, Elvira Fortunato, Rodrigo Martins, Hugo Águas, and Manuel J. Mendes. 2022. "Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaics" Nanomaterials 12, no. 19: 3268. https://doi.org/10.3390/nano12193268
APA StyleCenteno, P., Alexandre, M., Neves, F., Fortunato, E., Martins, R., Águas, H., & Mendes, M. J. (2022). Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaics. Nanomaterials, 12(19), 3268. https://doi.org/10.3390/nano12193268