The Effects of Lengths of Flavin Surfactant N-10-Alkyl Side Chains on Promoting Dispersion of a High-Purity and Diameter-Selective Single-Walled Nanotube
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Preparation of SWNT Dispersion
Tandem Surfactant Dispersion
2.3. Absorption Measurement
2.4. Photoluminescence Excitation (PLE) Measurement
2.5. Atomic Force Microscopy (AFM) Measurement
2.6. Raman Measurement
2.7. Geometrical Modeling of Flavin-Wrapped SWNT
2.8. Transmission Electron Microscopy (TEM) Measurement
2.9. Scanning Electron Microscopy (SEM) Measurement
2.10. Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) Mass Spectrometry (MS) Measurement
2.10.1. Sample Preparation
2.10.2. Measurement
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, R.S.; Kim, H.J.; Fischer, J.E.; Thess, A.; Smalley, R.E. Conductivity Enhancement in Single-Walled Carbon Nanotube Bundles Doped with K and Br. Nature 1997, 388, 255–257. [Google Scholar] [CrossRef]
- Bekyarova, E.; Itkis, M.E.; Cabrera, N.; Zhao, B.; Yu, A.; Gao, J.; Haddon, R.C. Electronic Properties of Single-Walled Carbon Nanotube Networks. J. Am. Chem. Soc. 2005, 127, 5990–5995. [Google Scholar] [CrossRef]
- Nirmalraj, P.N.; Lyons, P.E.; De, S.; Coleman, J.N.; Boland, J.J. Electrical Connectivity in Single-Walled Carbon Nanotube Networks. Nano Lett. 2009, 9, 3890–3895. [Google Scholar] [CrossRef]
- Seliuta, D.; Subačius, L.; Kašalynas, I.; Shuba, M.; Paddubskaya, A.; Ksenevich, V.; Kuzhir, P.; Maksimenko, S.; Valušis, G. Electrical Conductivity of Single-Wall Carbon Nanotube Films in Strong Electric Field. J. Appl. Phys. 2013, 113, 183719. [Google Scholar] [CrossRef]
- Liew, K.M.; Wong, C.H.; He, X.Q.; Tan, M.J. Thermal Stability of Single and Multi-Walled Carbon Nanotubes. Phys. Rev. B 2005, 71, 075424. [Google Scholar] [CrossRef]
- Duong, H.M.; Papavassiliou, D.V.; Mullen, K.J.; Wardle, B.L.; Maruyama, S. Calculated Thermal Properties of Single-Walled Carbon Nanotube Suspensions. J. Phys. Chem. C 2008, 112, 19860–19865. [Google Scholar] [CrossRef]
- Duzynska, A.; Taube, A.; Korona, K.P.; Judek, J.; Zdrojek, M. Temperature-Dependent Thermal Properties of Single-Walled Carbon Nanotube Thin Films. Appl. Phys. Lett. 2015, 106, 183108. [Google Scholar] [CrossRef]
- Zheng, M.; Jagota, A.; Semke, E.D.; Diner, B.A.; McLean, R.S.; Lustig, S.R.; Richardson, R.E.; Tassi, N.G. DNA-Assisted Dispersion and Separation of Carbon Nanotubes. Nat. Mater. 2003, 2, 338–342. [Google Scholar] [CrossRef]
- Zheng, M.; Jagota, A.; Strano, M.S.; Santos, A.P.; Barone, P.; Chou, S.G.; Diner, B.A.; Dresselhaus, M.S.; McLean, R.S.; Onoa, G.B.; et al. Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly. Science 2003, 302, 1545–1548. [Google Scholar] [CrossRef]
- Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes. Nature 2009, 460, 250–253. [Google Scholar] [CrossRef]
- Arnold, M.S.; Stupp, S.I.; Hersam, M.C. Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients. Nano Lett. 2005, 5, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.S.; Green, A.A.; Hulvat, J.F.; Stupp, S.I.; Hersam, M.C. Sorting Carbon Nanotubes by Electronic Structure Using Density Differentiation. Nat. Nanotechnol. 2006, 1, 60–65. [Google Scholar] [CrossRef]
- Green, A.A.; Hersam, M.C. Processing and Properties of Highly Enriched Double-Wall Carbon Nanotubes. Nat. Nanotechnol. 2009, 4, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Large-Scale Single-Chirality Separation of Single-Wall Carbon Nanotubes by Simple Gel Chromatography. Nat. Commun. 2011, 2, 309. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Tanaka, T.; Urabe, Y.; Kataura, H. pH- and Solute-Dependent Adsorption of Single-Wall Carbon Nanotubes onto Hydrogels: Mechanistic Insights into the Metal/Semiconductor Separation. ACS Nano 2013, 7, 10285–10295. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Tanaka, T.; Yomogida, Y.; Sato, N.; Saito, R.; Kataura, H. Experimental Determination of Excitonic Band Structures of Single-Walled Carbon Nanotubes Using Circular Dichroism Spectra. Nat. Commun. 2016, 7, 12899. [Google Scholar] [CrossRef]
- Khripin, C.Y.; Fagan, J.A.; Zheng, M. Spontaneous Partition of Carbon Nanotubes in Polymer-Modified Aqueous Phases. J. Am. Chem. Soc. 2013, 135, 6822–6825. [Google Scholar] [CrossRef]
- Fagan, J.A.; Hároz, E.H.; Ihly, R.; Gui, H.; Blackburn, J.L.; Simpson, J.R.; Lam, S.; Hight Walker, A.R.; Doorn, S.K.; Zheng, M. Isolation of >1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction. ACS Nano 2015, 9, 5377–5390. [Google Scholar] [CrossRef]
- Li, H.; Gordeev, G.; Garrity, O.; Peyyety, N.A.; Selvasundaram, P.B.; Dehm, S.; Krupke, R.; Cambré, S.; Wenseleers, W.; Reich, S.; et al. Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime. ACS Nano 2020, 14, 948–963. [Google Scholar] [CrossRef]
- Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R.J. Highly Selective Dispersion of Single-Walled Carbon Nanotubes Using Aromatic Polymers. Nat. Nanotechnol. 2007, 2, 640–646. [Google Scholar] [CrossRef]
- Chen, F.; Wang, B.; Chen, Y.; Li, L.-J. Toward the Extraction of Single Species of Single-Walled Carbon Nanotubes Using Fluorene-Based Polymers. Nano Lett. 2007, 7, 3013–3017. [Google Scholar] [CrossRef] [PubMed]
- Akazaki, K.; Toshimitsu, F.; Ozawa, H.; Fujigaya, T.; Nakashima, N. Recognition and One-Pot Extraction of Right- and Left-Handed Semiconducting Single-Walled Carbon Nanotube Enantiomers Using Fluorene-Binaphthol Chiral Copolymers. J. Am. Chem. Soc. 2012, 134, 12700–12707. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Fukuzawa, M.; Toshimitsu, F.; Nakashima, N. Separation of Semiconducting Single-Walled Carbon Nanotubes Using a Flavin Compound. Chem. Lett. 2015, 44, 566–567. [Google Scholar] [CrossRef]
- Park, M.; Kim, S.; Kwon, H.; Hong, S.; Im, S.; Ju, S.-Y. Selective Dispersion of Highly Pure Large-Diameter Semiconducting Carbon Nanotubes by a Flavin for Thin-Film Transistors. ACS Appl. Mater. Interfaces 2016, 8, 23270–23280. [Google Scholar] [CrossRef]
- Nakashima, N.; Fukuzawa, M.; Nishimura, K.; Fujigaya, T.; Kato, Y.; Staykov, A. Supramolecular Chemistry-Based One-Pot High-Efficiency Separation of Solubilizer-Free Pure Semiconducting Single-Walled Carbon Nanotubes: Molecular Strategy and Mechanism. J. Am. Chem. Soc. 2020, 142, 11847–11856. [Google Scholar]
- Huang, W.; Toshimitsu, F.; Ozono, K.; Matsumoto, M.; Borah, A.; Motoishi, Y.; Park, K.H.; Jang, J.W.; Fujigaya, T. Thermoelectric Properties of Dispersant-Free Semiconducting Single-Walled Carbon Nanotubes Sorted by a Flavin Extraction Method. Chem. Commun. 2019, 55, 2636–2639. [Google Scholar] [CrossRef]
- Ju, S.-Y.; Doll, J.; Sharma, I.; Papadimitrakopoulos, F. Selection of Carbon Nanotubes with Specific Chiralities Using Helical Assemblies of Flavin Mononucleotide. Nat. Nanotechnol. 2008, 3, 356–362. [Google Scholar]
- Ju, S.-Y.; Kopcha, W.P.; Papadimitrakopoulos, F. Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization. Science 2009, 323, 1319–1323. [Google Scholar]
- Konevtsova, O.V.; Roshal, D.S.; Dmitriev, V.P.; Rochal, S.B. Carbon Nanotube Sorting due to Commensurate Molecular Wrapping. Nanoscale 2020, 12, 15725–15735. [Google Scholar] [CrossRef]
- Ogunro, O.O.; Wang, X.-Q. Quantum Electronic Stability in Selective Enrichment of Carbon Nanotubes. Nano Lett. 2009, 9, 1034–1038. [Google Scholar] [CrossRef]
- Sharifi, R.; Samaraweera, M.; Gascón, J.A.; Papadimitrakopoulos, F. Thermodynamics of the Quasi-Epitaxial Flavin Assembly around Various-Chirality Carbon Nanotubes. J. Am. Chem. Soc. 2014, 136, 7452–7463. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Sim, J.; Ju, S.-Y. Binding Affinities and Thermodynamics of Noncovalent Functionalization of Carbon Nanotubes with Surfactants. Langmuir 2013, 29, 11154–11162. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.-S.; Park, M.; Koo, E.; Ju, S.-Y. Dispersions of Carbon Nanotubes by Helical Flavin Surfactants: Solvent Induced Stability and Chirality Enrichment, and Solvatochromism. Carbon 2021, 184, 346–356. [Google Scholar] [CrossRef]
- Gomulya, W.; Costanzo, G.D.; de Carvalho, E.J.F.; Bisri, S.Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; et al. Semiconducting Single-Walled Carbon Nanotubes on Demand by Polymer Wrapping. Adv. Mater. 2013, 25, 2948–2956. [Google Scholar] [CrossRef]
- Lee, H.W.; Yoon, Y.; Park, S.; Oh, J.H.; Hong, S.; Liyanage, L.S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y.J.; et al. Selective Dispersion of High Purity Semiconducting Single-Walled Carbon Nanotubes with Regioregular Poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541. [Google Scholar] [CrossRef]
- Wang, H.; Koleilat, G.I.; Liu, P.; Jiménez-Osés, G.; Lai, Y.-C.; Vosgueritchian, M.; Fang, Y.; Park, S.; Houk, K.N.; Bao, Z. High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors. ACS Nano 2014, 8, 2609–2617. [Google Scholar] [CrossRef]
- Gomulya, W.; Salazar Rios, J.M.; Derenskyi, V.; Bisri, S.Z.; Jung, S.; Fritsch, M.; Allard, S.; Scherf, U.; dos Santos, M.C.; Loi, M.A. Effect of Temperature on the Selection of Semiconducting Single Walled Carbon Nanotubes Using Poly(3-dodecylthiophene-2,5-diyl). Carbon 2015, 84, 66–73. [Google Scholar] [CrossRef]
- Sim, J.; Kim, S.; Jang, M.; Park, M.; Oh, H.; Ju, S.-Y. Determination of the Absolute Enantiomeric Excess of the Carbon Nanotube Ensemble by Symmetry Breaking Using the Optical Titration Method. Langmuir 2017, 33, 11000–11009. [Google Scholar] [CrossRef]
- Nikolaev, P.; Bronikowski, M.J.; Bradley, R.K.; Rohmund, F.; Colbert, D.T.; Smith, K.A.; Smalley, R.E. Gas-Phase Catalytic Growth of Single-Walled Carbon Nanotubes from Carbon Monoxide. Chem. Phys. Lett. 1999, 313, 91–97. [Google Scholar] [CrossRef]
- Frier, C.; Décout, J.-L.; Fontecave, M. Method for Preparing New Flavin Derivatives: Synthesis of Flavin−Thymine Nucleotides and Flavin−Oligonucleotide Adducts. J. Org. Chem. 1997, 62, 3520–3528. [Google Scholar] [CrossRef]
- Ju, S.-Y.; Papadimitrakopoulos, F. Synthesis and Redox Behavior of Flavin Mononucleotide-Functionalized Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2008, 130, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Koo, E.; Ju, S.-Y. Role of Residual Polymer on Chemical Vapor Grown Graphene by Raman Spectroscopy. Carbon 2015, 86, 318–324. [Google Scholar] [CrossRef]
- S. Maruyama’s Site. Available online: http://www.photon.t.u-tokyo.ac.jp/~maruyama/wrapping3/wrapping.html (accessed on 31 May 2022).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- O’Connell, M.J.; Bachilo, S.M.; Huffman, C.B.; Moore, V.C.; Strano, M.S.; Haroz, E.H.; Rialon, K.L.; Boul, P.J.; Noon, W.H.; Kittrell, C.; et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science 2002, 297, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Naumov, A.V.; Ghosh, S.; Tsyboulski, D.A.; Bachilo, S.M.; Weisman, R.B. Analyzing Absorption Backgrounds in Single-Walled Carbon Nanotube Spectra. ACS Nano 2011, 5, 1639–1648. [Google Scholar] [CrossRef] [PubMed]
- Itkis, M.E.; Perea, D.E.; Jung, R.; Niyogi, S.; Haddon, R.C. Comparison of Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2005, 127, 3439–3448. [Google Scholar] [CrossRef]
- Park, M.; Choi, I.-S.; Ju, S.-Y. Quantification and Removal of Carbonaceous Impurities in a Surfactant-Assisted Carbon Nanotube Dispersion and Its Implication on Electronic Properties. Nanoscale Adv. 2022, 4, 3537–3548. [Google Scholar] [CrossRef]
- Subramani, C.; Yesilbag, G.; Jordan, B.J.; Li, X.; Khorasani, A.; Cooke, G.; Sanyal, A.; Rotello, V.M. Recognition Mediated Encapsulation and Isolation of Flavin–Polymer Conjugates Using Dendritic Guest Moieties. Chem. Commun. 2010, 46, 2067–2069. [Google Scholar] [CrossRef]
- Rong, Z.; Kjaergaard, H.G. Internal Methyl Rotation in the CH Stretching Overtone Spectra of ortho-, meta-, and para-Xylene. J. Phys. Chem. A 2002, 106, 6242–6253. [Google Scholar] [CrossRef]
- Ding, J.; Li, Z.; Lefebvre, J.; Cheng, F.; Dubey, G.; Zou, S.; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G.P.; et al. Enrichment of Large-Diameter Semiconducting SWCNTs by Polyfluorene Extraction for High Network Density Thin Film Transistors. Nanoscale 2014, 6, 2328–2339. [Google Scholar] [CrossRef]
- Crochet, J.; Clemens, M.; Hertel, T. Quantum Yield Heterogeneities of Aqueous Single-Wall Carbon Nanotube Suspensions. J. Am. Chem. Soc. 2007, 129, 8058–8059. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Tanaka, T.; Li, S.; Tsuzuki, M.; Wang, G.; Yao, Z.; Li, L.; Yomogida, Y.; Hirano, A.; Liu, H.; et al. Photoluminescence Quantum Yield of Single-Wall Carbon Nanotubes Corrected for the Photon Reabsorption Effect. Nano Lett. 2020, 20, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Jorio, A.; Souza Filho, A.G.; Saito, R. Defect Characterization in Graphene and Carbon Nanotubes Using Raman Spectroscopy. Philos. Trans. R. Soc. A 2010, 368, 5355–5377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, J.; Oh, H.; Koo, E.; Ju, S.-Y. Effect of Tight Flavin Mononucleotide Wrapping and Its Binding Affinity on Carbon Nanotube Covalent Reactivities. Phys. Chem. Chem. Phys. 2013, 15, 19169–19179. [Google Scholar] [CrossRef]
- Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Electronic Structure of Chiral Graphene Tubules. Appl. Phys. Lett. 1992, 60, 2204–2206. [Google Scholar] [CrossRef]
- Jishi, R.A.; Inomata, D.; Nakao, K.; Dresselhaus, M.S.; Dresselhaus, G. Electronic and Lattice Properties of Carbon Nanotubes. J. Phys. Soc. Jpn. 1994, 63, 2252–2260. [Google Scholar] [CrossRef]
- Magonov, S.N.; Elings, V.; Whangbo, M.H. Phase Imaging and Stiffness in Tapping-Mode Atomic Force Microscopy. Surf. Sci. 1997, 375, L385–L391. [Google Scholar] [CrossRef]
- Thanawan, S.; Radabutra, S.; Thamasirianunt, P.; Amornsakchai, T.; Suchiva, K. Origin of Phase Shift in Atomic Force Microscopic Investigation of the Surface Morphology of NR/NBR Blend Film. Ultramicroscopy 2009, 109, 189–192. [Google Scholar] [CrossRef]
- Cheng, Q.; Debnath, S.; Gregan, E.; Byrne, H.J. Effect of Solvent Solubility Parameters on the Dispersion of Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2008, 112, 20154–20158. [Google Scholar] [CrossRef]
- Bergin, S.D.; Sun, Z.; Rickard, D.; Streich, P.V.; Hamilton, J.P.; Coleman, J.N. Multicomponent Solubility Parameters for Single-Walled Carbon Nanotube−Solvent Mixtures. ACS Nano 2009, 3, 2340–2350. [Google Scholar] [CrossRef]
- Ham, H.T.; Choi, Y.S.; Chung, I.J. An Explanation of Dispersion States of Single-Walled Carbon Nanotubes in Solvents and Aqueous Surfactant Solutions Using Solubility Parameters. J. Colloid Interface Sci. 2005, 286, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Krevelen, D.W.V. Properties of Polymers, 3rd ed.; Elsevier: New York, NY, USA, 1990; p. 203. [Google Scholar]
- Zuaznabar-Gardona, J.C.; Fragoso, A. Determination of the Hansen Solubility Parameters of Carbon Nano-Onions and Prediction of Their Dispersibility in Organic Solvents. J. Mol. Liq. 2019, 294, 111646. [Google Scholar] [CrossRef]
- Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S.D.; Coleman, J.N. Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir 2010, 26, 3208–3213. [Google Scholar] [CrossRef] [PubMed]
- Süß, S.; Sobisch, T.; Peukert, W.; Lerche, D.; Segets, D. Determination of Hansen Parameters for Particles: A Standardized Routine based on Analytical Centrifugation. Adv. Powder Technol. 2018, 29, 1550–1561. [Google Scholar] [CrossRef]
- Mollahosseini, M.; Karunaratne, E.; Gibson, G.N.; Gascón, J.A.; Papadimitrakopoulos, F. Fullerene-Assisted Photoinduced Charge Transfer of Single-Walled Carbon Nanotubes through a Flavin Helix. J. Am. Chem. Soc. 2016, 138, 5904–5915. [Google Scholar] [CrossRef]
- Song, S.H.; Dick, B.; Penzkofer, A. Photo-Induced Reduction of Flavin Mononucleotide in Aqueous Solutions. Chem. Phys. 2007, 332, 55–65. [Google Scholar] [CrossRef]
- Shi, J.X.; Yang, H.; Xing, S.Y.; Zhang, H. Molecular Dynamics Simulation of the Fold of Alkyl Groups with Different Lengths when N-Hexane Molecules Forming Ordered Structure on Their Functionalized Graphene. Surf. Sci. 2022, 716, 121965. [Google Scholar] [CrossRef]
- Alagbe, B.D.; Gibb, B.C.; Ashbaugh, H.S. Evolution of the Free Energy Landscapes of n-Alkane Guests Bound within Supramolecular Complexes. J. Phys. Chem. B 2021, 125, 7299–7310. [Google Scholar] [CrossRef]
- He, Z.; Jiang, W.; Schalley, C.A. Integrative Self-Sorting: A Versatile Strategy for the Construction of Complex Supramolecular Architecture. Chem. Soc. Rev. 2015, 44, 779–789. [Google Scholar] [CrossRef]
- Stranick, S.J.; Parikh, A.N.; Tao, Y.T.; Allara, D.L.; Weiss, P.S. Phase Separation of Mixed-Composition Self-Assembled Monolayers into Nanometer Scale Molecular Domains. J. Phys. Chem. 1994, 98, 7636–7646. [Google Scholar] [CrossRef]
- Mayoral, M.J.; Rest, C.; Schellheimer, J.; Stepanenko, V.; Fernández, G. Narcissistic versus Social Self-Sorting of Oligophenyleneethynylene Derivatives: From Isodesmic Self-Assembly to Cooperative Co-Assembly. Chem.-Eur. J. 2012, 18, 15607–15611. [Google Scholar] [CrossRef] [PubMed]
- Kanno, R.; Tanaka, K.; Ikami, T.; Ouchi, M.; Terashima, T. Reversible Co-Self-Assembly and Self-Sorting Systems of Polymer Micelles in Water: Polymers Switch Association Partners in Response to Salts. Macromolecules 2022, 55, 5213–5221. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Hwang, S.; Ju, S.-Y. The Effects of Lengths of Flavin Surfactant N-10-Alkyl Side Chains on Promoting Dispersion of a High-Purity and Diameter-Selective Single-Walled Nanotube. Nanomaterials 2022, 12, 3380. https://doi.org/10.3390/nano12193380
Park M, Hwang S, Ju S-Y. The Effects of Lengths of Flavin Surfactant N-10-Alkyl Side Chains on Promoting Dispersion of a High-Purity and Diameter-Selective Single-Walled Nanotube. Nanomaterials. 2022; 12(19):3380. https://doi.org/10.3390/nano12193380
Chicago/Turabian StylePark, Minsuk, Seongjoo Hwang, and Sang-Yong Ju. 2022. "The Effects of Lengths of Flavin Surfactant N-10-Alkyl Side Chains on Promoting Dispersion of a High-Purity and Diameter-Selective Single-Walled Nanotube" Nanomaterials 12, no. 19: 3380. https://doi.org/10.3390/nano12193380
APA StylePark, M., Hwang, S., & Ju, S.-Y. (2022). The Effects of Lengths of Flavin Surfactant N-10-Alkyl Side Chains on Promoting Dispersion of a High-Purity and Diameter-Selective Single-Walled Nanotube. Nanomaterials, 12(19), 3380. https://doi.org/10.3390/nano12193380