Recent Progress in Research on Ferromagnetic Rhenium Disulfide
Abstract
:1. Introduction
2. Crystal Structure and Band Structure of ReS2
2.1. Crystal Structure
2.2. Band Structure
3. Progress in Theoretical Calculations and Experimental Studies of ReS2 Magnetism
3.1. Defect Engineering
3.2. Doping Engineering
3.2.1. Nonmetallic Element Doped ReS2
3.2.2. Metal-Doped ReS2
3.3. Strain Engineering
3.4. Phase Engineering
3.5. Domain Engineering
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Liang, S.-J.; Cheng, B. Straintronics with van der Waals materials. npj Quantum Mater. 2021, 6, 59. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Li, W.; Zeng, Y.; Huang, X.X.; Yun, C.; Zhang, B.; Hou, Y.L. Structure engineering of 2D materials toward magnetism modulation. Small Struct. 2021, 2, 2100077. [Google Scholar] [CrossRef]
- Song, T.C.; Cai, X.H.; Tu Matisse, W.Y.; Zhang, X.O.; Huang, B.; Wilson Nathan, P.; Seyler Kyle, L.; Zhu, L.; Taniguchi, T.; Watanabe, K.; et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.S.; Yuan, X.; Zou, Y.C.; Sheng, Y.; Huang, C.; Zhang, E.Z.; Ling, J.; Liu, Y.W.; Wang, W.Y.; Zhang, C.; et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. Npj 2D Mater. Appl. 2017, 1, 30. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ivanovski, V.N.; Petrovic, C. Critical behavior of the van der Waals bonded ferromagnet Fe3-xGeTe2. Phys. Rev. B 2017, 96, 144429. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Xian, C.; Wang, J.; Liu, B.J.; Ling, L.S.; Zhang, L.; Cao, L.; Qu, Z.; Xiong, Y.M. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2. Phys. Rev. B 2017, 96, 134428. [Google Scholar] [CrossRef]
- Yi, J.Y.; Zhuang, H.L.; Zou, Q.; Wu, Z.M.; Cao, G.X.; Tang, S.W.; Calder, S.A.; Kent, P.R.C.; Mandrus, D.; Gai, Z. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 2017, 4, 011005. [Google Scholar] [CrossRef]
- Roemer, R.; Liu, C.; Zou, K. Robust ferromagnetism in wafer-scale monolayer and multilayer Fe3GeTe2. NPJ 2D Mater. Appl. 2020, 4, 33. [Google Scholar] [CrossRef]
- Wang, H.Y.; Liu, Y.J.; Wu, P.C.; Hou, W.J.; Jiang, Y.H.; Li, X.H.; Pandey, C.; Chen, D.D.; Yang, Q.; Wang, H.T.; et al. Above room-temperature ferromagnetism in wafer-scale two- dimensional van der Waals Fe3GeTe2 tailored by a topological insulator. ACS Nano 2020, 14, 10045–10053. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.X.; Song, P.; Wang, C.C.; Riis-Jensen, A.C.; Fu, W.; Deng, Y.; Wan, D.Y.; Kang, L.X.; Ning, S.C.; Dan, J.D.; et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 2020, 581, 171–177. [Google Scholar] [CrossRef]
- Cai, L.; He, J.F.; Liu, Q.H.; Yao, T.; Chen, L.; Yan, W.S.; Hu, F.C.; Jiang, Y.; Zhao, Y.D.; Hu, T.D.; et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.R.; McCreary, A.; Rhodes, D.; Lu, Z.; Feng, S.; Manousakis, E.; Smirnov, D.; Namburu, R.; Dubey, M.; Hight Walker, A.R.; et al. Metal to insulator quantum-phase transition in few-layered ReS2. Nano Lett. 2015, 15, 8377–8384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.T.; Lv, H.F.; Zhuo, Z.W.; Jalil, A.; Zhang, W.H.; Wu, X.J.; Yang, J.L. A new phase of the two-dimensional ReS2 sheet with tunable magnetism. J. Mater. Chem. C 2018, 6, 1248–1254. [Google Scholar] [CrossRef]
- Zhang, J.L.; Wu, S.Y.; Shan, Y.; Guo, J.H.; Yan, S.; Xiao, S.Y.; Yang, C.B.; Shen, J.C.; Chen, J.; Liu, L.Z.; et al. Distorted monolayer ReS2 with low-magnetic-field controlled magnetoelectricity. ACS Nano 2019, 13, 2334–2340. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, Z.M.; Wu, N.; Wang, W.J.; Gao, Y.J.; Zhang, Q.Q.; Shi, J.; Zhuang, L.; Sun, X.N.; Fu, L. Nitrogen-doping induces tunfable magnetism in ReS2. Npj 2d Mater. Appl. 2018, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.O.; Li, Q.F. Electronic and magnetic properties of nonmetal atoms adsorbed ReS2 monolayers. J. Appl. Phys. 2015, 118, 064306. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, X.Y.; Zhong, J.S.; Hu, J.G. Induction of an atomically thin ferromagnetic semiconductor in 1T’ phase ReS2 by doping with transition metals. Phys. Lett. A 2019, 383, 125883. [Google Scholar] [CrossRef]
- Loh, G.C.; Pandey, R. Robust magnetic domains in fluorinated ReS2 monolayer. Phys. Chem. Chem. Phys. 2015, 17, 18843–18853. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, D.S.; Liu, Y.; Hwang, J.; Kim, Y.; Kim, W.; Kim, J.Y.; Petrovic, C.; Hwang, C.; Mo, S.K.; et al. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett. 2020, 20, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Z.; Liang, X.; Zhao, H.Y.; Chen, Y.H.; He, Q.; Liu, J.; Lv, L.; Yang, J.H.; Wu, H.L.; Chen, L. Tuning the magnetic properties of Fe3GeTe2 by doping with 3d transition-metals. Phys. Lett. A 2021, 396, 127219. [Google Scholar] [CrossRef]
- May, A.F.; Yan, J.Q.; Hermann, R.; Du, M.H.; McGuire, M.A. Tuning the room temperature ferromagnetism in Fe5GeTe2 by arsenic substitution. 2D Mater. 2022, 9, 015013. [Google Scholar] [CrossRef]
- Mi, M.J.; Zheng, X.W.; Wang, S.L.; Zhou, Y.; Yu, L.X.; Xiao, H.; Song, H.N.; Shen, B.; Li, F.S.; Bai, L.H.; et al. Variation between antiferromagnetism and ferrimagnetism in NiPS3 by electron doping. Adv. Funct. Mater. 2022, 32, 2112750. [Google Scholar] [CrossRef]
- Meng, M.; Shi, C.G.; Li, T.; Shi, S.E.; Li, T.H.; Liu, L.Z. Magnetism induced by cationic defect in monolayer ReSe2 controlled by strain engineering. Appl. Surf. Sci. 2017, 425, 696–701. [Google Scholar] [CrossRef]
- Ren, H.T.; Xiang, G.; Lu, J.T.; Zhang, X.; Zhang, L. Biaxial strain-mediated room temperature ferromagnetism of ReS2 web buckles. Adv. Electron. Mater. 2019, 5, 1900814. [Google Scholar] [CrossRef]
- Cenker, J.; Sivakumar, S.; Xie, K.C.; Miller, A.; Thijssen, P.; Liu, Z.Y.; Dismukes, A.; Fonseca, J.; Anderson, E.; Zhu, X.Y.; et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 2022, 17, 256–261. [Google Scholar] [CrossRef]
- Zhu, M.M.; You, Y.R.; Xu, G.Z.; Tang, J.X.; Gong, Y.Y.; Xu, F. Strain modulation of magnetic coupling in the metallic van der waals magnet Fe3GeTe2. Intermetallics 2021, 131, 107085. [Google Scholar] [CrossRef]
- Hu, X.H.; Zhao, Y.H.; Shen, X.D.; Krasheninnikov, A.V.; Chen, Z.F.; Sun, L.T. Enhanced ferromagnetism and tunable magnetism in Fe3GeTe2 monolayer by strain engineering. ACS Appl. Mater. Interfaces 2020, 12, 26367–26373. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Liang, S.J.; Ma, Z.C.; Xu, K.; Liu, X.W.; Zhang, L.L.; Admasu, A.S.; Cheong, S.-W.; Wang, L.Z.; et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 2020, 32, 2004533. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, S.S.; Yang, L.; Chen, Z.D.; Zhang, E.Z.; Li, Z.H.; Wu, J.; Ruan, X.Z.; Xiu, F.X.; Liu, W.Q.; et al. Light-tunable ferromagnetism in atomically thin Fe3GeTe2 driven by femtosecond laser pulse. Phys. Rev. Lett. 2020, 125, 267205. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiao, C.X.; Park, H.; Zhu, J.Y.; Wang, C.; Taniguchi, T.; Watanabe, K.; Yan, J.Q.; Xiao, D.; Gamelin, D.R.; et al. Light-induced ferromagnetism in moiré superlattices. Nature 2022, 604, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.J.; Yu, Y.J.; Song, Y.C.; Zhang, J.Z.; Wang, N.Z.; Sun, Z.Y.; Yi, Y.F.; Wu, Y.Z.; Wu, S.W.; Zhu, J.Y.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Yang, M.M.; Gong, C.; Chopdekar, R.V.; N’Diaye, A.T.; Turner, J.; Chen, G.; Scholl, A.; Shafer, P.; Arenholz, E.; et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 2018, 18, 5974–5980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, D.; Trout, A.H.; McComb, D.W.; Goldberger, J.E. Decomposition-induced room-temperature magnetism of the Na-intercalated layered ferromagnet Fe3-xGeTe2. Nano Lett. 2019, 19, 5031–5035. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Wang, Z.S.; Zhao, X.X.; Wang, J.Y.; Herng, T.S.; Ma, T.; Zhu, Z.Y.; Ding, J.; Eda, G.; Pennycook, S.J.; et al. Domain engineering in ReS2 by coupling strain during electrochemical exfoliation. Adv. Funct. Mater. 2020, 30, 2003057. [Google Scholar] [CrossRef]
- Autieri, C.; Cuono, G.; Noce, C.; Rybak, M.; Kotur, K.M.; Agrapidis, C.E.; Wohlfeld, K.; Birowska, M. Limited ferromagnetic interactions in monolayers of MPS3 (M = Mn and Ni). J. Phys. Chem. C 2022, 126, 6791–6802. [Google Scholar] [CrossRef]
- Basnet, R.; Ford, D.; TenBarge, K.; Lochala, J.; Hu, J. Emergence of ferrimagnetism in Li-intercalated NiPS3. J. Phys. Condens. Mat. 2022, 34, 434002. [Google Scholar] [CrossRef]
- Ren, H.T.; Zhang, L.; Xiang, G. Web buckle-mediated room-temperature ferromagnetism in strained MoS2 thin films. Appl. Phys. Lett. 2020, 116, 012401. [Google Scholar] [CrossRef]
- Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.Y.; et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.B.; Dai, X.Y.; Tang, D.Q.; Wang, X.; Hong, J.H.; Chen, C.; Yang, Y.; Lu, J.B.; Zhu, J.G.; Lei, Z.B.; et al. Realizing the intrinsic anisotropic growth of 1T′ ReS2 on selected Au (101) substrate toward large-scale single crystal fabrication. Adv. Funct. Mater. 2021, 31, 2102138. [Google Scholar] [CrossRef]
- Fadhel, M.M.; Ali, N.; Rashid, H.; Sapiee, N.M.; Hamzah, A.E.; Zan, M.S.D.; Aziz, N.A.; Arsad, N. A Review on rhenium disulfide: Synthesis approaches, optical properties, and applications in Pulsed Lasers. Nanomaterials 2021, 11, 2367. [Google Scholar] [CrossRef] [PubMed]
- Li, X.B.; Chen, C.; Yang, Y.; Lei, Z.B.; Xu, H. 2D Re-based transition metal chalcogenides: Progress, challenges, and opportunities. Adv. Sci. 2020, 7, 2002320. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Z.; Jokisaari, J.R.; Zhang, Y.; Cheng, X.X.; Yan, X.X.; Heikes, C.; Lin, Q.Y.; Gadre, C.; Schlom, D.G.; Chen, L.Q.; et al. Control of domain structures in multiferroic thin films through defect engineering. Adv. Mater. 2018, 30, 1802737. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Davey, K.; Qiao, S.Z. Advent of 2D rhenium disulfide (ReS2): Fundamentals to applications. Adv. Funct. Mater. 2017, 27, 1606129. [Google Scholar] [CrossRef] [Green Version]
- Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H. Strain mapping in single-layer two -dimensional crystals via Raman activity. Phys. Rev. B 2018, 97, 115427. [Google Scholar] [CrossRef] [Green Version]
- Wolverson, D.; Crampin, S.; Kazemi, A.S.; Ilie, A.; Bending, S.J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164. [Google Scholar] [CrossRef] [Green Version]
- Li, W.B.; Qian, X.F.; Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 2021, 6, 829–846. [Google Scholar] [CrossRef]
- Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712. [Google Scholar] [CrossRef]
- Liu, E.F.; Fu, Y.J.; Wang, Y.J.; Feng, Y.Q.; Liu, H.M.; Wan, X.G.; Zhou, W.; Wang, B.G.; Shao, L.B.; Ho, C.H.; et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, D.; Ganose, A.M.; Yano, R.; Riley, J.M.; Bawden, L.; Clark, O.J.; Feng, J.; Collins-Mcintyre, L.; Sajjad, M.T.; Meevasana, W.; et al. Narrow-band anisotropic electronic structure of ReS2. Phys. Rev. B 2017, 96, 085205. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.J.; Zhang, Q.; Zhao, X.X.; Liu, M.Z.; Wee, A.T.S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ling, C.Y.; Xu, T.; Wang, W.H.; Niu, X.H.; Zafar, A.; Yan, Z.Z.; Wang, X.M.; You, Y.M.; Sun, L.T.; et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332. [Google Scholar] [CrossRef]
- Lin, Z.; Carvalho, B.R.; Kahn, E.; Lv, R.T.; Rao, R.; Terrones, H.; Pimenta, M.A.; Terrones, M. Defect engineering of two- dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002. [Google Scholar] [CrossRef]
- Lee, J.; Heo, J.; Lim, H.Y.; Seo, J.; Kim, Y.; Kim, J.; Kim, U.; Choi, Y.; Kim, S.H.; Yoon, Y.J.; et al. Defect-induced in situ atomic doping in transition metal dichalcogenides via liquid-phase synthesis toward efficient electrochemical activity. ACS Nano 2020, 14, 17114–17124. [Google Scholar] [CrossRef]
- Horzum, S.; Cakir, D.; Suh, J.; Tongay, S.; Huang, Y.S.; Ho, C.H.; Wu, J.; Sahin, H.; Peeters, F.M. Formation and stability of point defects in monolayer rhenium disulfide. Phys. Rev. B 2014, 89, 155433. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.; Gopinadhan, K.; Chan, T.K.; Yu, X.J.; Zhan, D.; Cao, L.; Rusydi, A.; Breese, M.B.H.; Dhar, S.; Shen, Z.X.; et al. Magnetism in MoS2 induced by proton irradiation. Appl. Phys. Lett. 2012, 101, 102103. [Google Scholar] [CrossRef] [Green Version]
- Komsa, H.-P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A.V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503. [Google Scholar] [CrossRef]
- Han, S.W.; Hwang, Y.H.; Kim, S.H.; Yun, W.S.; Lee, J.D.; Park, M.G.; Ryu, S.; Park, J.S.; Yoo, D.H.; Yoon, S.P.; et al. Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys. Rev. Lett. 2013, 110, 247201. [Google Scholar] [CrossRef]
- Han, S.W.; Park, Y.; Hwang, Y.H.; Lee, W.G.; Hong, S.C. Investigation of electron irradiation-induced magnetism in layered MoS2 single crystals. Appl. Phys. Lett. 2016, 109, 252403. [Google Scholar] [CrossRef] [Green Version]
- Rani, R.; Dimple; Jena, N.; Kundu, A.; Sarkar, A.D.; Hazra, K.S. Controlled formation of nanostructures on MoS2 layers by focused laser irradiation. Appl. Phys. Lett. 2017, 110, 083101. [Google Scholar] [CrossRef]
- Ren, H.T.; Xiang, G. Morphology-dependent room-temperature ferromagnetism in undoped ZnO nanostructures. Nanomaterials 2021, 11, 3199. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Y.; Yao, J.L.; Gao, J.; Shan, Y.; Liu, L.Z. The exchange between anions and cations induced by coupled plasma and thermal annealing treatment for room-temperature ferromagnetism. Phys. Chem. Chem. Phys. 2022, 24, 7001–7006. [Google Scholar] [CrossRef]
- Ren, H.T.; Xiang, G.; Gu, G.X.; Zhang, X. Enhancement of ferromagnetism of ZnO:Co nanocrystals by post-annealing treatment: The role of oxygen interstitials and zinc vacancies. Mater. Lett. 2014, 122, 256–260. [Google Scholar] [CrossRef]
- Ren, H.T.; Xiang, G.; Gu, G.X.; Zhang, X.; Wang, W.J.; Zhang, P.; Wang, B.Y.; Cao, X.Z. Zinc vacancy-induced room- temperature ferromagnetism in undoped ZnO thin films. J. Nanomater. 2012, 2012, 295358. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.T.; Xiang, G.; Luo, J.; Yang, D.L.; Zhang, X. Direct catalyst-free self-assembly of large area of horizontal ferromagnetic ZnO nanowire arrays. Mater. Lett. 2019, 234, 384–387. [Google Scholar] [CrossRef]
- Wang, E.Z.; Chen, Z.K.; Shi, R.; Xiong, Z.X.; Xin, Z.Q.; Wang, B.L.; Guo, J.; Peng, R.X.; Wu, Y.H.; Li, C.Y.; et al. Humidity-controlled dynamic engineering of buckling dimensionality in MoS2 thin films. ACS Nano 2022. [CrossRef]
- Ren, H.T.; Xiong, Z.X.; Wang, E.Z.; Yuan, Z.Q.; Sun, Y.F.; Zhu, K.L.; Wang, B.L.; Wang, X.W.; Ding, H.Y.; Liu, P.; et al. Watching dynamic self-assembly of web buckles in strained MoS2 thin films. ACS Nano 2019, 13, 3106–3116. [Google Scholar] [CrossRef]
- Cakir, D.; Sahin, H.; Peeters, F.M. Doping of rhenium disulfide monolayers: A systematic first principles study. Phys. Chem. Chem. Phys. 2014, 16, 16771–16779. [Google Scholar] [CrossRef]
- Luo, M.; Xu, Y.E. Magnetic properties of rhenium disulfide (ReS2) monolayer doped with different nonmetal atoms. Optik 2018, 158, 291–296. [Google Scholar] [CrossRef]
- Zhou, W.; Zou, X.L.; Najmaei, S.; Liu, Z.; Shi, Y.M.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Hu, Z.X.; Probert, M.; Li, K.; Lv, D.H.; Yang, X.N.; Gu, L.; Mao, N.N.; Feng, Q.L.; Xie, L.M.; et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, M.; Shen, Y.H.; Yin, T.L. Structural, electronic, and magnetic properties of transition metal doped ReS2 monolayer. JETP. Lett. 2017, 105, 255–259. [Google Scholar] [CrossRef]
- Obodo, K.O.; Ouma, C.N.M.; Obodo, J.T.; Braun, M. Influence of transition metal doping on the electronic and optical properties of ReS2 and ReSe2 monolayers. Phys. Chem. Chem. Phys. 2017, 19, 19050–19057. [Google Scholar] [CrossRef]
- Luo, M.; Xu, Y.E. A first principle study on the magnetic properties of Ag, Al, Li, Mg, and Na doped ReS2 monolayers. J. Supercond. Nov. Magn. 2018, 31, 2431–2436. [Google Scholar] [CrossRef]
- Li, J.F.; Liao, Z.X.; Xia, B.R.; Wang, T.T.; Gao, D.Q. Tunable ferromagnetic ordering in phosphorus adsorbed ReS2 nanosheets. Nanotechnology 2021, 32, 075701. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, M.M.; Zhou, X.; Sun, Q. Tuning electronic and magnetic properties of graphene by surface modification. Appl. Phys. Lett. 2009, 95, 103108. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Q.; Sun, Q.; Jena, P. Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. Phys. Rev. B 2010, 81, 085442. [Google Scholar] [CrossRef] [Green Version]
- Shoda, K.; Kohno, H.; Kobayashi, Y.; Takagi, D.; Takeda, S. Feasibility study for sidewall fluorination of SWCNTs in CF4 plasma. J. Appl. Phys. 2008, 104, 113529. [Google Scholar] [CrossRef]
- Hong, X.; Cheng, S.H.; Herding, C.; Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B 2011, 83, 085410. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Zou, K.; Wang, B.; Cheng, S.H.; Zhu, J. Evidence for spin-flip scattering and local moments in dilute fluorinated graphene. Phys. Rev. Lett. 2012, 108, 226602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, R.R.; Sepioni, M.; Tsai, I.L.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A.V.; Thomson, T.; Geim, A.K. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Ren, W.C.; Jalil, R.; Riaz, I.; Kravets, V.G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A.S.; Yuan, S.J.; et al. Fluorographene: A two-dimensional counterpart of teflon. Small 2010, 6, 2877–2884. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Shen, Y.H.; Song, Y.X. Structural and magnetic properties of transition-metal adsorbed ReS2 monolayer. Jpn. J. Appl. Phys. 2017, 56, 055701. [Google Scholar] [CrossRef]
- Yang, S.X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.S.; Suslu, A.; Peeters, F.M.; Liu, Q.; Li, J.B.; et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666. [Google Scholar] [CrossRef]
- Tao, P.; Guo, H.; Yang, T.; Zhang, Z. Strain-induced magnetism in MoS2 monolayer with defects. J. Appl. Phys. 2014, 115, 054305. [Google Scholar] [CrossRef] [Green Version]
- Kan, M.; Wang, J.Y.; Li, X.W.; Zhang, S.H.; Li, Y.W.; Kawazoe, Y.; Sun, Q.; Jena, P. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 2014, 118, 1515–1522. [Google Scholar] [CrossRef]
- Zhang, Q.; Tan, S.J.; Mendes, R.G.; Sun, Z.T.; Chen, Y.T.; Kong, X.; Xue, Y.H.; Rummeli, M.H.; Wu, X.J.; Chen, S.L.; et al. Extremely weak van der Waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries. Adv. Mater. 2016, 28, 2616–2623. [Google Scholar] [CrossRef]
- Xiao, J.; Zhu, H.Y.; Wang, Y.; Feng, W.; Hu, Y.X.; Dasgupta, A.; Han, Y.M.; Wang, Y.; Muller, D.A.; Martin, L.W.; et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 2018, 120, 227601. [Google Scholar] [CrossRef]
- Yu, Y.L.; Jung, G.S.; Liu, C.Z.; Lin, Y.C.; Rouleau, C.M.; Yoon, M.; Eres, G.; Duscher, G.; Xiao, K.; Irle, S.; et al. Strain-induced growth of twisted bilayers during the coalescence of monolayer MoS2 crystals. ACS Nano 2021, 15, 4504–4517. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, S.; Deng, Q.; Hou, Z.; Zhou, X.; Li, X.; Cui, F.; Si, H.; Zhai, T.; Xu, H. Epitaxial growth of rectangle shape MoS2 with highly aligned orientation on twofold symmetry a-plane sapphire. Small 2020, 16, 2000596. [Google Scholar] [CrossRef]
- Xu, J.G.; Srolovitz, D.J.; Ho, D. The adatom concentration profile: A paradigm for understanding two-dimensional MoS2 morphological evolution in chemical vapor deposition growth. ACS Nano 2021, 15, 6839–6848. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Seung, H.; Kang, D.H.; Kim, J.; Bae, H.; Park, H.; Kang, S.S.; Choi, C.; Choi, B.K.; Kim, J.S.; et al. Wafer-scale production of transition metal dichalcogenides and alloy monolayers by nanocrystal conversion for large-scale ultrathin flexible electronics. Nano Lett. 2021, 21, 9153–9163. [Google Scholar] [CrossRef]
- Aljarb, A.; Fu, J.H.; Hsu, C.C.; Chuu, C.P.; Wan, Y.; Hakami, M.; Naphade, D.R.; Yengel, E.; Lee, C.J.; Brems, S.; et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 2020, 19, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.Z.; Wei, Z.; Du, L.J.; Wang, Q.Q.; Tang, J.; Yu, H.; Wu, F.F.; Zhao, J.J.; Xu, X.Z.; Han, B.; et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.G.; Guo, Y.; Wang, H.Y.; Gu, J.N.; Zhang, Y.Z.; Cheng, Z.J.; Li, B.; Li, S.M.; Yang, S.B. High-throughput production of 1T MoS2 monolayers based on controllable conversion of Mo-based MXenes. ACS Nano 2021, 15, 19275–19283. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Li, B.C.; Lei, J.C.; Bets Ksenia, V.; Sang, X.H.; Okogbue, E.; Liu, Y.; Unocic Raymond, R.; Yakobson Boris, I.; Hone, J.; et al. Nickel particle-enabled width-controlled growth of bilayer molybdenum disulfide nanoribbons. Sci. Adv. 2021, 7, eabk1892. [Google Scholar] [CrossRef]
- Liu, L.; Li, T.T.; Ma, L.; Li, W.S.; Gao, S.; Sun, W.J.; Dong, R.K.; Zou, X.L.; Fan, D.X.; Shao, L.W.; et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022, 605, 69–75. [Google Scholar] [CrossRef]
- Wu, R.X.; Tao, Q.Y.; Dang, W.Q.; Liu, Y.; Li, B.; Li, J.; Zhao, B.; Zhang, Z.W.; Ma, H.F.; Sun, G.Z.; et al. Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 2019, 29, 1806611. [Google Scholar] [CrossRef]
- Wang, J.H.; Xu, X.Z.; Cheng, T.; Gu, L.H.; Qiao, R.X.; Liang, Z.H.; Ding, D.D.; Hong, H.; Zheng, P.M. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 2021, 17, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Li, X.B.; Wang, X.; Hong, J.H.; Liu, D.Y.; Feng, Q.L.; Lei, Z.B.; Liu, K.H.; Ding, F.; Xu, H. Nanoassembly growth model for subdomain and grain boundary formation in 1T′ layered ReS2. Adv. Funct. Mater. 2019, 29, 1906385. [Google Scholar] [CrossRef]
- Jing, Q.H.; Zhang, H.; Huang, H.; Fan, X.C.; Zhang, Y.M.; Hou, X.Y.; Xu, Q.Y.; Ni, Z.H.; Qiu, T. Ultrasonic exfoliated ReS2 nanosheets: Fabrication and use as co-catalyst for enhancing photocatalytic efficiency of TiO2 nanoparticles under sunlight. Nanotechnology 2019, 30, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Chen, B.; Yan, D.D.; Zhao, X.Y.; Wang, C.L.; Liu, E.Z.; Zhao, N.Q.; He, F. Distorted 1T-ReS2 nanosheets anchored on porous TiO2 nanofibers for highly enhanced photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2019, 11, 23144–23151. [Google Scholar] [CrossRef]
- Pan, J.; Wang, R.; Xu, X.Y.; Hu, J.G.; Ma, L. Transition metal doping activated basal-plane catalytic activity of two -dimensional 1T’-ReS2 for hydrogen evolution reaction: A first-principles calculation study. Nanoscale 2019, 11, 10402–10409. [Google Scholar] [CrossRef]
- Yang, S.Z.; Gong, Y.J.; Manchanda, P.; Zhang, Y.Y.; Ye, G.L.; Chen, S.M.; Song, L.; Pantelides, S.T.; Ajayan, P.M.; Chisholm, M.F.; et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 2018, 30, 1803477. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, E.H.; Zhou, J.D.; Lin, J.H.; Ma, R.G.; Wang, Y.W.; Qiu, W.J.; Shen, R.X.; Suenaga, K.; Liu, Q.; et al. Auto-optimizing hydrogen evolution catalytic activity of ReS2 through intrinsic charge engineering. ACS Nano 2018, 12, 4486–4493. [Google Scholar] [CrossRef]
- Huang, J.W.; Gao, H.G.; Xia, Y.F.; Sun, Y.H.; Xiong, J.; Li, Y.R.; Cong, S.; Guo, J.; Du, S.Y.; Zou, G.F. Enhanced photoelectrochemical performance of defect-rich ReS2 nanosheets in visible-light assisted hydrogen generation. Nano Energy 2018, 46, 305–313. [Google Scholar] [CrossRef]
- Ng, S.; Iffelsberger, C.; Sofer, Z.; Pumera, M. Tunable room-temperature synthesis of ReS2 bicatalyst on 3D-and 2D-printed electrodes for photo- and electrochemical energy applications. Adv. Funct. Mater. 2020, 30, 1910193. [Google Scholar] [CrossRef]
- Marchiori, E.; Ceccarelli, L.; Rossi, N.; Lorenzelli, L.; Degen, C.L.; Poggio, M. Nanoscale magnetic field imaging for 2D materials. Nat. Rev. Phys. 2022, 4, 49–60. [Google Scholar] [CrossRef]
- Mattiat, H.; Rossi, N.; Gross, B.; Pablo-Navarro, J.; Magén, C.; Badea, R.; Berezovsky, J.; De Teresa, J.M.; Poggio, M. Nanowire magnetic force sensors fabricated by focused-electron-beam-induced deposition. Phys. Rev. Appl. 2020, 13, 044043. [Google Scholar] [CrossRef] [Green Version]
- Vasyukov, D.; Anahory, Y.; Embon, L.; Halbertal, D.; Cuppens, J.; Neeman, L.; Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M.L.; et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 2013, 8, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Vool, U.; Hamo, A.; Varnavides, G.; Wang, Y.; Zhou, T.X.; Kumar, N.; Dovzhenko, Y.; Qiu, Z.; Garcia, C.A.C.; Pierce, A.T.; et al. Imaging phonon-mediated hydrodynamic flow in WTe2. Nat. Phys. 2021, 17, 1216–1220. [Google Scholar] [CrossRef]
- Ariyaratne, A.; Bluvstein, D.; Myers, B.A.; Jayich, A.C.B. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nat. Commun. 2018, 9, 2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wörnle, M.S.; Welter, P.; Giraldo, M.; Lottermoser, T.; Fiebig, M.; Gambardella, P.; Degen, C.L. Coexistence of Bloch and N’eel walls in a collinear antiferromagnet. Phys. Rev. B 2021, 103, 094426. [Google Scholar] [CrossRef]
- Chang, K.; Eichler, A.; Rhensius, J.; Lorenzelli, L.; Degen, C.L. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 2017, 17, 2367–2373. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Xiang, G. Recent Progress in Research on Ferromagnetic Rhenium Disulfide. Nanomaterials 2022, 12, 3451. https://doi.org/10.3390/nano12193451
Ren H, Xiang G. Recent Progress in Research on Ferromagnetic Rhenium Disulfide. Nanomaterials. 2022; 12(19):3451. https://doi.org/10.3390/nano12193451
Chicago/Turabian StyleRen, Hongtao, and Gang Xiang. 2022. "Recent Progress in Research on Ferromagnetic Rhenium Disulfide" Nanomaterials 12, no. 19: 3451. https://doi.org/10.3390/nano12193451
APA StyleRen, H., & Xiang, G. (2022). Recent Progress in Research on Ferromagnetic Rhenium Disulfide. Nanomaterials, 12(19), 3451. https://doi.org/10.3390/nano12193451