Novel Approach to Synthesis of AgZnS and TiO2 Decorated on Reduced Graphene Oxide Ternary Nanocomposite for Hydrogen Evolution Effect of Enhanced Synergetic Factors
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation Process for Different Photocatalysts
2.3. Instrumental Characterization
2.4. Photocatalytic Measurement
2.5. Electrical Performance Test
3. Results and Discussion
3.1. Characterizations of Photocatalysts
3.2. Photocatalytic H2 Evolution
Catalyst | H2 Evolution Amounts (with the Scavenger) | H2 Evolution Amounts | References |
---|---|---|---|
LaCdSe-GO-TiO2 | 443.28 μmol/g. | 324.15 μmol/g/4 h (sonophotocatalytic) | [32] |
BaCuZnS-graphene-TiO2 | 5541.04 μmol/g/4 h | 2715.60 μmol/g/4 h | [28] |
ZnS:Eu quantum dots | 11100 μmol/g/h | 9000 μmol/g/h | [33] |
ZnS:V | 1140 μmol/g/h after 300 min | - | [38] |
pure ZnS | 67 μmol/g/h after 300 min | - | [13] |
NiMoSx | - | 4.93 μmol/g/1 min | [25] |
CoMoSx | - | 3.85 μmol/g/1 min | [13] |
FeMoSx | - | 1.57 μmol/g/1 min | [13] |
MnMoSx | - | 1.52 μmol/g/1 min | [14] |
platinum | - | 0.35 μmol/g/1 min | [14] |
Ni6(SCH2Ph)12-TiO2 | - | 5600 μmol/g/h | [35] |
WSe2-graphene-TiO2 | 2.004 mmol/11 h | 1.718 mmol/11 h | [39] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.G.; Devi, L.G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef]
- He, R.; He, W. Ultrasonic assisted synthesis of TiO2-reduced graphene oxide nanocomposites with superior photovoltaic and photocatalytic activities. Ceram. Int. 2015, 42, 5766–5771. [Google Scholar] [CrossRef]
- Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Arif, M.; Li, Q.; Yao, J.; Huang, T.; Hua, Y.; Liu, T. Enhance photocatalysis performance and mechanism of CdS and Ag synergistic co-catalyst supported on mesoporous g-C3N4 nanosheets under visible-light irradiation. J. Environ. Chem. Eng. 2017, 5, 5358–5368. [Google Scholar] [CrossRef]
- Li, X.L.; Yang, G.Q.; Li, S.S.; Xiao, N.; Ge, L. Novel dual co-catalysts decorated Au@HCS@PdS hybrids with spatially separated charge carriers and enhanced photocatalytic hydrogen evolution activity. Chem. Eng. J. 2020, 379, 122350. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, Y.G.; Chen, J.; Huang, C.Y.; Hsieh, S.C.; Wu, S.Y. Ionic liquid/surfactant-hydrothermal synthesis of dendritic PbS@CuS core-shell photocatalysts with improved photocatalytic performance. Appl. Surf. Sci. 2021, 546, 149106. [Google Scholar] [CrossRef]
- Yu, H.; Liu, W.; Wang, X.; Wang, F. Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: A case study of TiO2/Ag-Ag2S photocatalyst. Appl. Catal. B Environ. 2018, 225, 415–423. [Google Scholar] [CrossRef]
- Td, A.; Bei, C.A.; Wh, B.; Jy, A.; Hua, T.C. Hierarchically CdS–Ag2S nanocomposites for efficient photocatalytic H2 production. Appl. Surf. Sci. 2019, 470, 196–204. [Google Scholar]
- Yuan, Y.P.; Cao, S.W.; Yin, L.S.; Xu, L.; Xue, C. NiS2 Co-catalyst decoration on CdLa2S4 nanocrystals for efficient photocatalytic hydrogen generation under visible light irradiation. Int. J. Hydrogen Energy 2013, 38, 7218–7223. [Google Scholar] [CrossRef]
- Pan, J.; Wang, B.; Dong, Z.; Zhao, C.; Jiang, Z.; Song, C. The 2D RGO-NiS2 dual co-catalyst synergistic modified g-C3N4 aerogel towards enhanced photocatalytic hydrogen production. Int. J. Hydrogen Energy 2019, 44, 19942–19952. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, D.; Bai, L.; Qin, L.; Sun, X.; Huang, Y. Decoration of WS2 as an effective noble-metal free cocatalyst on ZnIn2S4 for enhanced visible light photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 18261–18269. [Google Scholar] [CrossRef]
- Yi, J.J.; She, J.S.; Song, Y.H.; Mao, M.; Xia, K.X.; Xu, Y.G.; Zhao, M.; Wu, J.J.; Xu, H.; Li, H.M. Solvothermal synthesis of metallic 1T-WS2: A supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chem. Eng. J. 2018, 335, 282–289. [Google Scholar] [CrossRef]
- Fu, G.; Lee, J.M. Ternary metal sulfides for electrocatalytic energy conversion. J. Mater. Chem. A 2019, 7, 9386–9405. [Google Scholar] [CrossRef]
- Aslan, E.; Sarilmaz, A.; Ozel, F.; Patir, I.H.; Girault, H.H. Catalytic hydrogen evolution by molybdenum-based ternary metal sulfide nanoparticles. ACS Appl. Nano Mater. 2019, 2, 7204–7213. [Google Scholar] [CrossRef]
- Tran, P.D.; Mai, N.; Pramana, S.S.; Bhattacharjee, A.; Chiam, S.Y.; Fize, J. Copper molybdenum sulfide: A new efficient electrocatalyst for hydrogen production from water. Energy Environ. Sci. 2012, 5, 8912–8916. [Google Scholar] [CrossRef]
- Wu, X.; Han, X.; Ma, X.; Zhang, W.; Deng, Y.; Zhong, C. Morphology-controllable synthesis of Zn–Co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc–air batteries and water electrolysis. ACS Appl. Mater. Interfaces 2017, 9, 12574–12583. [Google Scholar] [CrossRef]
- Zhan, F.; Wang, Q.; Li, Y. Low-temperature synthesis of cuboid silver tetrathiotungstate (Ag2WS4) as electrocatalyst for hydrogen evolution reaction. Inorg. Chem. 2018, 57, 5791–5800. [Google Scholar] [CrossRef]
- Tran, P.D.; Chiam, S.Y.; Boix, P.P.; Ren, Y.; Pramana, S.S.; Fize, J. Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 2013, 6, 2452–2459. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, H.; Shi, Z.; Wu, F.; Guo, J.; Deng, K. 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 17200–17207. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, F.L.; Cao, F.R. A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Res. 2015, 8, 3524–3534. [Google Scholar] [CrossRef]
- Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206. [Google Scholar] [CrossRef] [PubMed]
- Bakoglidis, K.D.; Palisaitis, J.; Dos Santos, R.B.; Rivelino, R.; Persson, P.O.; Gueorguiev, G.K.; Lars, H. Self-healing in carbon nitride evidenced as material inflation and superlubric behavior. ACS Appl. Mater. Interfaces 2018, 10, 16238–16243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, R.R.; de Brito Mota, F.; Rivelino, R.; De Castilho, C.M.C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Spin-orbit-induced gap modification in buckled honeycomb xbi and xbi3 (x=b, al, ga, and in) sheets. J. Phys. Condens. Matter Inst. Phys. J. 2015, 27, 485306. [Google Scholar] [CrossRef] [Green Version]
- Staszak-Jirkovsky, J.; Malliakas, C.D.; Lopes, P.P.; Danilovic, N.; Kota, S.S.; Chang, K.C. Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, L.; Qu, F.; Liu, Z.; Du, G.; Asiri, A.M. A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 16585–16589. [Google Scholar] [CrossRef]
- Gao, P.; Sun, D.D. Ultrasonic Preparation of Hierarchical Graphene-Oxide/TiO2 Composite Microspheres for Efficient Photocatalytic Hydrogen Production. Chem. Asian J. 2013, 8, 2779–2786. [Google Scholar] [CrossRef]
- Lei, Z.; Lim, C.S.; Zeda, M.; Choi, J.G.; Park, C.Y.; Trisha, G.; Cho, K.Y.; Oh, W.C. Hydrothermal synthesis and highly visible light-induced photocatalytic activity of acid functionalized MWCNTs as support for ZnS-photosensitized TiO2 catalysts. J. Ceram. Process. Res. 2012, 13, 283–290. [Google Scholar]
- Rafat, M.N.; Cho, K.Y.; Chong, H.J.; Oh, W.C. New modeling of 3D quaternary type BaCuZnS-graphene- TiO2 (BCZS-GT) composite for photosonocatalytic hydrogen evolution with scavenger effect. Photochem. Photobiol. Sci. 2020, 19, 1765–1775. [Google Scholar] [CrossRef]
- Biswas, M.R.U.D.; Ali, A.; Cho, K.Y.; Oh, W.C. Novel synthesis of WSe2-Graphene- TiO2 ternary nanocomposite via ultrasonic technics for high photocatalytic reduction of CO2 into CH3OH. Ultrason. Sonochem. 2018, 42, 738–746. [Google Scholar] [CrossRef]
- Zambaga, O.; Jung, C.H.; Oh, W.C. New modeling of AgFeNi2S4-graphene-TiO2 ternary nanocomposite with chelate compounds and its photocatalytic reduction of CO2. J. Mater. Sci. Mater. Electron. 2021, 32, 9804–9821. [Google Scholar]
- Kovtun, A.; Jones, D.; Dell’Elce, S.; Treossi, E.; Liscio, A.; Palermo, V. Accurate chemical analysis of graphene-based materials using X-ray photoelectron spectroscopy. Carbon 2019, 143, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Rafat, M.N.; Chang, S.L.; Cho, K.Y.; Chong, H.J.; Oh, W.C. 3D ternary LaCdSe-GO-TiO2 nanocomposite synthesized with high powersonic method and sonophotocatalytic efficiency for hydrogen evolution with different scavengers. Res. Chem. Intermed. 2021, 47, 3411–3436. [Google Scholar] [CrossRef]
- Poornaprakash, B.; Vattikuti, S.P.; Subramanyam, K.; Cheruku, R.; Devarayapalli, K.; Kim, Y.L.; Park, H.; Reddy, M.S.P. Photoluminescence and hydrogen evolution properties of ZnS: Eu quantum dots. Ceram. Int. 2021, 47, 28976–28984. [Google Scholar] [CrossRef]
- You, Z.; Yue, X.; Zhang, D.; Fan, J.; Xiang, Q. Construction 0D/2D heterojunction by highly dispersed Ag2S quantum dots (QDs) loaded on the g-C3N4 nanosheets for photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 662–675. [Google Scholar] [CrossRef]
- Tian, F.; Chen, J.; Chen, F.; Liu, Y.; Chen, R. Boosting hydrogen evolution over Ni6(SCH2Ph)12 nanocluster modified TiO2 via pseudo-Z-scheme interfacial charge transfer. Appl. Catal. B Environ. 2021, 292, 120158. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, P.; Duan, M.; Li, J.; Ren, Z.; Wang, P. Fabrication of a magnetically separable and dual Z-scheme PANI/Ag3PO4/NiFe2O4 composite with enhanced visible-light photocatalytic activity for organic pollutant elimination. Appl. Surf. Sci. 2019, 486, 198–211. [Google Scholar] [CrossRef]
- Nguyen, D.; Woo, J.H.; Cho, K.Y.; Jung, C.H.; Oh, W.C. Highly efficient visible light driven photocatalytic activities of the LaCuS2-graphene composite-decorated ordered mesoporous silica. Sep. Purif. Technol. 2018, 205, 11–21. [Google Scholar] [CrossRef]
- Poornaprakash, B.; Prak, H.; Subramanyam, K.; Vattikuti, S.; Reddy, V. Doping-induced photocatalytic activity and hydrogen evolution of ZnS: V nanoparticle. Ceram. Int. 2021, 47, 26438–26446. [Google Scholar] [CrossRef]
- Zhu, L.; Nguyen, D.C.T.; Woo, J.-H.; Zhang, Q.F.; Cho, K.Y.; Oh, W.C. An eco-friendly synthesized mesoporous-silica particle combined with WSe2-graphene- TiO2 by self-assembled method for photocatalytic dye decomposition and hydrogen production. Sci. Rep. 2018, 8, 12759. [Google Scholar] [CrossRef]
- Ullah, K.; Ye, S.; Jo, S.B.; Zhu, L.; Cho, K.Y.; Oh, W.C. Optical and photocatalytic properties of novel heterogeneous PtSe2-graphene/ TiO2 nanocomposites synthesized via ultrasonic assisted techniques. Ultrason. Sonochem. 2014, 21, 1849–1857. [Google Scholar] [CrossRef]
- Mosleh, S.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrason. Sonochem. 2016, 32, 387–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Zhang, Q.; He, J.; Huang, F.; Li, C.; Wang, M. Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. J. Energy Chem. 2022, 65, 304–311. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Rafat, M.N.; Yoon, C.-M.; Oh, W.-C. Novel Approach to Synthesis of AgZnS and TiO2 Decorated on Reduced Graphene Oxide Ternary Nanocomposite for Hydrogen Evolution Effect of Enhanced Synergetic Factors. Nanomaterials 2022, 12, 3639. https://doi.org/10.3390/nano12203639
Zhao J, Rafat MN, Yoon C-M, Oh W-C. Novel Approach to Synthesis of AgZnS and TiO2 Decorated on Reduced Graphene Oxide Ternary Nanocomposite for Hydrogen Evolution Effect of Enhanced Synergetic Factors. Nanomaterials. 2022; 12(20):3639. https://doi.org/10.3390/nano12203639
Chicago/Turabian StyleZhao, Jingjing, Md Nazmodduha Rafat, Chang-Min Yoon, and Won-Chun Oh. 2022. "Novel Approach to Synthesis of AgZnS and TiO2 Decorated on Reduced Graphene Oxide Ternary Nanocomposite for Hydrogen Evolution Effect of Enhanced Synergetic Factors" Nanomaterials 12, no. 20: 3639. https://doi.org/10.3390/nano12203639
APA StyleZhao, J., Rafat, M. N., Yoon, C. -M., & Oh, W. -C. (2022). Novel Approach to Synthesis of AgZnS and TiO2 Decorated on Reduced Graphene Oxide Ternary Nanocomposite for Hydrogen Evolution Effect of Enhanced Synergetic Factors. Nanomaterials, 12(20), 3639. https://doi.org/10.3390/nano12203639