Bias-Modified Schottky Barrier Height-Dependent Graphene/ReSe2 van der Waals Heterostructures for Excellent Photodetector and NO2 Gas Sensing Applications
Abstract
:1. Introduction
2. Experimental Detail
2.1. Device Fabrication
2.2. Characterization
2.3. Electrical and Electro-Optical Measurement
2.4. NO2 Gas Sensing Measurement
3. Results and Discussion
3.1. ReSe2 Device Electrical Performance
3.2. Gr/ReSe2 Photodetector Response
3.3. SBH Estimation
3.4. Energy Band Diagram
3.5. Gr/ReSe2 Heterostructure as NO2 Gas Sensor
Photodetector (Material) | Responsivity (AW−1) @ Wavelength | Internal or External Quantum Efficiency (%) | Detectivity (Jones) | Rise/Fall Time (s) OR Response Time | Refs. |
---|---|---|---|---|---|
Graphene | 5 × 10−4 | 6–16% | - | - | [71] |
Few layer ReS2 | 13 (220 nm) | 0.73 | - | 6/21 | [22] |
1D Se–2D InSe heterojunction | 3.2 × 10−2 (460 nm) | 8.7 | 1.7 × 1011 | 3.0 × 10−2/3.7 × 10−2 | [72] |
BP/InSe | 1.17 × 10−2 (455 nm) | 3.2 | - | 2.4 × 10−2/3.2 × 10−2 | [73] |
Se-ReS2 | 36 (370 nm) | - | 8 × 1012 | <1 × 10−2/<1 × 10−2 | [74] |
CVD monolayer ReS2 | 13 (532 nm) | - | - | 30-50 s | [75] |
ReSe2/WSe2 | 0.28 (520 nm) | - | 1.1 × 1012 | 4.7 × 10−3/4.1 × 10−3 | [76] |
ReS2/ReSe2 | 126.56 (350 nm) | - | 1.76 × 1011 | 6.0 × 10−6/8.9 × 10−6 | [77] |
Sb2Se3/WS2 | 1.51 (520 nm) | - | 1.16 × 1010 | 8.0 × 10−3/8.0 × 10−3 | [78] |
ReS2 bi-layer film | 4 × 10−3 (500 nm) | 0.99 | - | 103 | [79] |
FL-ReSe2 | 11.2 (532 nm) | 26.1 | 1.02 × 1010 | 2.37/5.03 | This work |
Gr/ReSe2-HS | 74 (532 nm) | 173 | 1.25 × 1011 | 75 × 10−6/3.0 × 10−6 | This work |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Z.; Cao, R.; Wei, K.; Yao, Y.; Liu, X.; Kang, J.; Dong, J.; Shi, Z.; Zhang, H.; Zhang, X. 2D Materials Enabled Next-Generation Integrated Optoelectronics: From Fabrication to Applications. Adv. Sci. 2021, 8, 2003834. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, J.; Shao, J.; Ouyang, D.; Zhang, W.; Liu, S.; Li, Y.; Zhai, T. Nanopatterning Technologies of Two-Dimensional Materials for Integrated Electronic and Optoelectronic Devices. Adv. Mater. 2022, 2200734. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Gong, K.; Li, Y.; Ding, B.; Li, L.; Xu, Y.; Wang, R.; Li, L.; Zhang, G.; Lin, S. Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. Small 2022, 18, 2105383. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Tao, Q.; Dang, W.; Liu, Y.; Li, B.; Li, J.; Zhao, B.; Zhang, Z.; Ma, H.; Sun, G. van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 2019, 29, 1806611. [Google Scholar] [CrossRef]
- Yin, X.; Tang, C.S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A.T. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-) metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115. [Google Scholar] [CrossRef]
- Ping, J.; Fan, Z.; Sindoro, M.; Ying, Y.; Zhang, H. Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 2017, 27, 1605817. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Sendeku, M.G.; Yin, L.; Zhan, X.; Wang, F.; Wang, Z.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694. [Google Scholar] [CrossRef]
- Huo, N.; Konstantatos, G. Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 2018, 30, 1801164. [Google Scholar] [CrossRef]
- Guan, X.; Yu, X.; Periyanagounder, D.; Benzigar, M.R.; Huang, J.K.; Lin, C.H.; Kim, J.; Singh, S.; Hu, L.; Liu, G. Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater. 2021, 9, 2001708. [Google Scholar] [CrossRef]
- Rehman, A.; Park, S.-J. State of the art two-dimensional materials-based photodetectors: Prospects, challenges and future outlook. J. Ind. Eng. Chem. 2020, 89, 28–46. [Google Scholar] [CrossRef]
- Lin, L.; Lei, W.; Zhang, S.; Liu, Y.; Wallace, G.G.; Chen, J. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 2019, 19, 408–423. [Google Scholar] [CrossRef]
- Yan, P.; Yang, D.; Wang, H.; Yang, S.; Ge, Z. Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy Environ. Sci. 2022, 15, 3630–3669. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Xie, J.; Lu, G.; Zhang, J. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors. Coord. Chem. Rev. 2021, 447, 214151. [Google Scholar] [CrossRef]
- Tajik, S.; Dourandish, Z.; Nejad, F.G.; Beitollahi, H.; Jahani, P.M.; Di Bartolomeo, A. Transition metal dichalcogenides: Synthesis and use in the development of electrochemical sensors and biosensors. Biosens. Bioelectron. 2022, 216, 114674. [Google Scholar] [CrossRef]
- Mathew, M.; Radhakrishnan, S.; Vaidyanathan, A.; Chakraborty, B.; Rout, C.S. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal. Bioanal. Chem. 2021, 413, 727–762. [Google Scholar] [CrossRef] [PubMed]
- Rohaizad, N.; Mayorga-Martinez, C.C.; Sofer, Z.K.; Pumera, M. 1T-phase transition metal dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with fast heterogeneous electron transfer: Application on second-generation enzyme-based biosensor. ACS Appl. Mater. Interfaces 2017, 9, 40697–40706. [Google Scholar] [CrossRef]
- Xiao, M.; Wei, S.; Chen, J.; Tian, J.; Brooks, C.L., III; Marsh, E.N.G.; Chen, Z. Molecular mechanisms of interactions between monolayered transition metal dichalcogenides and biological molecules. J. Am. Chem. Soc. 2019, 141, 9980–9988. [Google Scholar] [CrossRef]
- Lim, H.R.; Kim, H.S.; Qazi, R.; Kwon, Y.T.; Jeong, J.W.; Yeo, W.H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924. [Google Scholar] [CrossRef]
- Jang, M.S.; Kim, H.; Son, Y.-W.; Atwater, H.A.; Goddard, W.A., III. Graphene field effect transistor without an energy gap. Proc. Natl. Acad. Sci. USA 2013, 110, 8786–8789. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef]
- Kim, S.; Shin, D.H.; Kim, Y.-S.; Lee, I.H.; Lee, C.-W.; Seo, S.; Jung, S. Highly Efficient Experimental Approach to Evaluate Metal to 2D Semiconductor Interfaces in Vertical Diodes with Asymmetric Metal Contacts. ACS Appl. Mater. Interfaces 2021, 13, 27705–27712. [Google Scholar] [CrossRef] [PubMed]
- Nazir, G.; Rehman, M.A.; Khan, M.F.; Dastgeer, G.; Aftab, S.; Afzal, A.M.; Seo, Y.; Eom, J. Comparison of electrical and photoelectrical properties of ReS2 field-effect transistors on different dielectric substrates. ACS Appl. Mater. Interfaces 2018, 10, 32501–32509. [Google Scholar] [CrossRef]
- Kim, J.; Heo, K.; Kang, D.H.; Shin, C.; Lee, S.; Yu, H.Y.; Park, J.H. Rhenium Diselenide (ReSe2) Near-Infrared Photodetector: Performance Enhancement by Selective p-Doping Technique. Adv. Sci. 2019, 6, 1901255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, B.; Kim, Y.; Yoo, W.J.; Lee, C. Ultrahigh photoresponsive device based on ReS2/graphene heterostructure. Small 2018, 14, 1802593. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Xing, Y.; Han, J.; Cui, B.; Lei, T.; Tu, H.; Guan, B.; Zeng, Z.; Zhang, B.; Lv, W. Ultrasensitive and Broad-Spectrum Photodetectors Based on InSe/ReS2 Heterostructure. Adv. Opt. Mater. 2022, 10, 2101772. [Google Scholar] [CrossRef]
- Niu, Y.; Zeng, J.; Liu, X.; Li, J.; Wang, Q.; Li, H.; de Rooij, N.F.; Wang, Y.; Zhou, G. A Photovoltaic Self-Powered Gas Sensor Based on All-Dry Transferred MoS2/GaSe Heterojunction for ppb-Level NO2 Sensing at Room Temperature. Adv. Sci. 2021, 8, 2100472. [Google Scholar] [CrossRef] [PubMed]
- Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F.H.; Konstantatos, G. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176–180. [Google Scholar] [CrossRef]
- Nazir, G.; Khan, M.F.; Akhtar, I.; Akbar, K.; Gautam, P.; Noh, H.; Seo, Y.; Chun, S.-H.; Eom, J. Enhanced photoresponse of ZnO quantum dot-decorated MoS2 thin films. RSC Adv. 2017, 7, 16890–16900. [Google Scholar] [CrossRef] [Green Version]
- Mallick, A.; Visoly-Fisher, I. Pb in halide perovskites for photovoltaics: Reasons for optimism. Mater. Adv. 2021, 2, 6125–6135. [Google Scholar] [CrossRef]
- Lan, C.; Li, C.; Wang, S.; He, T.; Zhou, Z.; Wei, D.; Guo, H.; Yang, H.; Liu, Y. Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C 2017, 5, 1494–1500. [Google Scholar] [CrossRef]
- Yu, W.; Li, S.; Zhang, Y.; Ma, W.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.J.; Cheng, B.; Cui, X.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darmadi, I.; Nugroho, F.A.A.; Langhammer, C. High-performance nanostructured palladium-based hydrogen sensors—Current limitations and strategies for their mitigation. ACS Sens. 2020, 5, 3306–3327. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Huang, B.; Li, X. Graphene-Based Heterostructure Composite Sensing Materials for Detection of Nitrogen-Containing Harmful Gases. Adv. Funct. Mater. 2021, 31, 2104058. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Saruhan, B.; Lontio Fomekong, R.; Nahirniak, S. Influences of semiconductor metal oxide properties on gas sensing characteristics. Front. Sens. 2021, 2, 657931. [Google Scholar] [CrossRef]
- Yang, S.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J.-B.; Li, S.-S.; Li, J.; Wei, S.-H. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 2014, 6, 7226–7231. [Google Scholar] [CrossRef]
- Gusakova, J.; Wang, X.; Shiau, L.L.; Krivosheeva, A.; Shaposhnikov, V.; Borisenko, V.; Gusakov, V.; Tay, B.K. Electronic properties of bulk and monolayer TMDs: Theoretical study within DFT framework (GVJ-2e method). Physica Status Solidi (a) 2017, 214, 1700218. [Google Scholar] [CrossRef]
- Bach, T.P.-A.; Jaffery, S.H.A.; Nguyen, D.C.; Ali, A.; Hussain, S.; Hussain, M.; Seo, Y.; Jung, J. Schottky barrier height modulation and photoconductivity in a vertical graphene/ReSe2 vdW pn heterojunction barristor. J. Mater. Res. Technol. 2022, 17, 2796–2806. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, J.; Zhong, H.; Guo, Q.; Wang, X.; Xia, F.; Yang, L.; Tan, P.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651–3661. [Google Scholar] [CrossRef] [Green Version]
- Wolverson, D.; Crampin, S.; Kazemi, A.S.; Ilie, A.; Bending, S.J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, G.; Khan, M.F.; Aftab, S.; Afzal, A.M.; Dastgeer, G.; Rehman, M.A.; Seo, Y.; Eom, J. Gate tunable transport in Graphene/MoS2/(Cr/Au) vertical field-effect transistors. Nanomaterials 2017, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faella, E.; Intonti, K.; Viscardi, L.; Giubileo, F.; Kumar, A.; Lam, H.T.; Anastasiou, K.; Craciun, M.F.; Russo, S.; Di Bartolomeo, A. Electric Transport in Few-Layer ReSe2 Transistors Modulated by Air Pressure and Light. Nanomaterials 2022, 12, 1886. [Google Scholar] [CrossRef] [PubMed]
- Nazir, G.; Khan, M.F.; Iermolenko, V.M.; Eom, J. Two-and four-probe field-effect and Hall mobilities in transition metal dichalcogenide field-effect transistors. RSC Adv. 2016, 6, 60787–60793. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Iqbal, M.Z.; Khan, M.F.; Shehzad, M.A.; Seo, Y.; Park, J.H.; Hwang, C.; Eom, J. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 2015, 5, 10699. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.F.; Rehman, S.; Akhtar, I.; Aftab, S.; Ajmal, H.M.S.; Khan, W.; Kim, D.-k.; Eom, J. High mobility ReSe2 field effect transistors: Schottky-barrier-height-dependent photoresponsivity and broadband light detection with Co decoration. 2D Mater. 2019, 7, 015010. [Google Scholar] [CrossRef]
- Kaushal, P.; Khanna, G. The role of 2-Dimensional materials for electronic devices. Mater. Sci. Semicond. Process. 2022, 143, 106546. [Google Scholar] [CrossRef]
- Wang, X.; Huang, L.; Peng, Y.; Huo, N.; Wu, K.; Xia, C.; Wei, Z.; Tongay, S.; Li, J. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 2016, 9, 507–516. [Google Scholar]
- Jang, A.-R.; Jeon, E.K.; Kang, D.; Kim, G.; Kim, B.-S.; Kang, D.J.; Shin, H.S. Reversibly light-modulated dirac point of graphene functionalized with spiropyran. ACS Nano 2012, 6, 9207–9213. [Google Scholar] [CrossRef]
- Chin, H.-T.; Lee, J.-J.; Hofmann, M.; Hsieh, Y.-P. Impact of growth rate on graphene lattice-defect formation within a single crystalline domain. Sci. Rep. 2018, 8, 4046. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kumar, R. Photodetection Properties of Graphene/Silicon van der Waals Heterojunction. ECS J. Solid State Sci. Technol. 2022, 11, 061010. [Google Scholar] [CrossRef]
- Nalwa, H.S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529–30602. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tang, X.; Wang, W.; Jin, L.; Li, G. Large-Size Ultrathin α-Ga2S3 Nanosheets toward High-Performance Photodetection. Adv. Funct. Mater. 2021, 31, 2008307. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, W.; Yang, W.; He, J.H.; Fang, X. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909. [Google Scholar] [CrossRef]
- Li, M.Y.; Yu, M.; Su, D.; Zhang, J.; Jiang, S.; Wu, J.; Wang, Q.; Liu, S. Ultrahigh responsivity UV photodetector based on Cu nanostructure/ZnO QD hybrid architectures. Small 2019, 15, 1901606. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, P.; Wu, Q.; Xiong, J.; Peng, R.; Huang, W.; Chen, S.; Wu, Z.; Li, C. Self-powered high-detectivity lateral MoS2 Schottky photodetectors for near-infrared operation. Adv. Electron. Mater. 2021, 7, 2001138. [Google Scholar] [CrossRef]
- Pollmann, E.; Sleziona, S.; Foller, T.; Hagemann, U.; Gorynski, C.; Petri, O.; Madauß, L.; Breuer, L.; Schleberger, M. Large-Area, Two-Dimensional MoS2 Exfoliated on Gold: Direct Experimental Access to the Metal–Semiconductor Interface. ACS Omega 2021, 6, 15929–15939. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, U.J.; Chung, J.; Nam, H.; Jeong, H.Y.; Han, G.H.; Kim, H.; Oh, H.M.; Lee, H.; Kim, H. Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 2016, 10, 6100–6107. [Google Scholar] [CrossRef]
- Gupta, S.; Rortais, F.; Ohshima, R.; Ando, Y.; Endo, T.; Miyata, Y.; Shiraishi, M. Monolayer MoS2 field effect transistor with low Schottky barrier height with ferromagnetic metal contacts. Sci. Rep. 2019, 9, 17032. [Google Scholar] [CrossRef] [Green Version]
- Urban, F.; Martucciello, N.; Peters, L.; McEvoy, N.; Di Bartolomeo, A. Environmental effects on the electrical characteristics of back-gated WSe2 field-effect transistors. Nanomaterials 2018, 8, 901. [Google Scholar] [CrossRef]
- Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L.E.; Kim, K.S.; Kim, P. Tuning the graphene work function by electric field effect. Nano Lett. 2009, 9, 3430–3434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahangir, I.; Uddin, M.A.; Singh, A.K.; Koley, G.; Chandrashekhar, M. Richardson constant and electrostatics in transfer-free CVD grown few-layer MoS2/graphene barristor with Schottky barrier modulation > 0.6 eV. Appl. Phys. Lett. 2017, 111, 142101. [Google Scholar] [CrossRef]
- Kumar, S.; Pavelyev, V.; Mishra, P.; Tripathi, N.; Sharma, P.; Calle, F. A review on 2D transition metal di-chalcogenides and metal oxide nanostructures based NO2 gas sensors. Mater. Sci. Semicond. Process. 2020, 107, 104865. [Google Scholar] [CrossRef]
- Guo, R.; Han, Y.; Su, C.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens. Actuators B Chem. 2019, 300, 127013. [Google Scholar] [CrossRef]
- Chen, X.; Hu, J.; Chen, P.; Yin, M.; Meng, F.; Zhang, Y. UV-light-assisted NO2 gas sensor based on WS2/PbS heterostructures with full recoverability and reliable anti-humidity ability. Sens. Actuators B Chem. 2021, 339, 129902. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, D.; Chen, H. MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sens. Actuators B Chem. 2019, 300, 127037. [Google Scholar] [CrossRef]
- Zheng, W.; Xu, Y.; Zheng, L.; Yang, C.; Pinna, N.; Liu, X.; Zhang, J. MoS2 Van der Waals p–n junctions enabling highly selective room-temperature NO2 sensor. Adv. Funct. Mater. 2020, 30, 2000435. [Google Scholar] [CrossRef]
- Kim, Y.; Kwon, K.C.; Kang, S.; Kim, C.; Kim, T.H.; Hong, S.-P.; Park, S.Y.; Suh, J.M.; Choi, M.-J.; Han, S. Two-dimensional NbS2 gas sensors for selective and reversible NO2 detection at room temperature. ACS Sens. 2019, 4, 2395–2402. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Long, X.; Cao, J.; Xin, X.; Guan, X.; Peng, J.; Zheng, X. Gas sensors based on mechanically exfoliated MoS2 nanosheets for room-temperature NO2 detection. Sensors 2019, 19, 2123. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Mueller, T.; Lin, Y.-m.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Chen, H.; Dai, M.; Hu, Y.; Gao, F.; Yang, H.; Xu, B.; Zhang, S.; Tan, B.; Zhang, X. A mixed-dimensional 1D Se–2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horiz. 2020, 5, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wu, J.; Jin, K.; Ding, H.; Li, T.; Wu, C.; Pan, N.; Wang, X. Highly Polarized and Fast Photoresponse of Black Phosphorus-InSe Vertical p–n Heterojunctions. Adv. Funct. Mater. 2018, 28, 1802011. [Google Scholar] [CrossRef]
- Qin, J.K.; Qiu, G.; He, W.; Jian, J.; Si, M.W.; Duan, Y.Q.; Charnas, A.; Zemlyanov, D.Y.; Wang, H.Y.; Shao, W.Z. Epitaxial growth of 1D atomic chain based Se nanoplates on monolayer ReS2 for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1806254. [Google Scholar] [CrossRef]
- Li, X.; Cui, F.; Feng, Q.; Wang, G.; Xu, X.; Wu, J.; Mao, N.; Liang, X.; Zhang, Z.; Zhang, J. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956–18962. [Google Scholar] [CrossRef]
- Tian, X.; Liu, Y. Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector. J. Semicond. 2021, 42, 032001. [Google Scholar] [CrossRef]
- Li, K.; Du, C.; Gao, H.; Yin, T.; Zheng, L.; Leng, J.; Wang, W. Ultrafast and Polarization-Sensitive ReS2/ReSe2 Heterostructure Photodetectors with Ambipolar Photoresponse. ACS Appl. Mater. Interfaces 2022, 14, 33589–33597. [Google Scholar] [CrossRef]
- Sun, G.; Li, B.; Li, J.; Zhang, Z.; Ma, H.; Chen, P.; Zhao, B.; Wu, R.; Dang, W.; Yang, X. Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional pn heterojunctions. Nano Res. 2019, 12, 1139–1145. [Google Scholar] [CrossRef]
- Hafeez, M.; Gan, L.; Li, H.; Ma, Y.; Zhai, T. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater. 2016, 26, 4551–4560. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, G.; Rehman, A.; Hussain, S.; Hakami, O.; Heo, K.; Amin, M.A.; Ikram, M.; Patil, S.A.; Din, M.A.U. Bias-Modified Schottky Barrier Height-Dependent Graphene/ReSe2 van der Waals Heterostructures for Excellent Photodetector and NO2 Gas Sensing Applications. Nanomaterials 2022, 12, 3713. https://doi.org/10.3390/nano12213713
Nazir G, Rehman A, Hussain S, Hakami O, Heo K, Amin MA, Ikram M, Patil SA, Din MAU. Bias-Modified Schottky Barrier Height-Dependent Graphene/ReSe2 van der Waals Heterostructures for Excellent Photodetector and NO2 Gas Sensing Applications. Nanomaterials. 2022; 12(21):3713. https://doi.org/10.3390/nano12213713
Chicago/Turabian StyleNazir, Ghazanfar, Adeela Rehman, Sajjad Hussain, Othman Hakami, Kwang Heo, Mohammed A. Amin, Muhammad Ikram, Supriya A. Patil, and Muhammad Aizaz Ud Din. 2022. "Bias-Modified Schottky Barrier Height-Dependent Graphene/ReSe2 van der Waals Heterostructures for Excellent Photodetector and NO2 Gas Sensing Applications" Nanomaterials 12, no. 21: 3713. https://doi.org/10.3390/nano12213713
APA StyleNazir, G., Rehman, A., Hussain, S., Hakami, O., Heo, K., Amin, M. A., Ikram, M., Patil, S. A., & Din, M. A. U. (2022). Bias-Modified Schottky Barrier Height-Dependent Graphene/ReSe2 van der Waals Heterostructures for Excellent Photodetector and NO2 Gas Sensing Applications. Nanomaterials, 12(21), 3713. https://doi.org/10.3390/nano12213713