Fe2O3/Porous Carbon Composite Derived from Oily Sludge Waste as an Advanced Anode Material for Supercapacitor Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. FPC Preparation
2.2. Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Characterizations of Samples
3.2. Capacitance Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sun, B.; Yao, M.; Chen, Y.; Tang, X.; Hu, W.; Pillai, S.C. Facile fabrication of flower-like γ-Fe2O3 @PPy from iron rust for high-performing asymmetric supercapacitors. J. Alloys Compd. 2022, 922, 166055. [Google Scholar] [CrossRef]
- Pazhamalai, P.; Krishnamoorthy, K.; Manoharan, S.; Mariappan, V.K.; Kim, S.-J. Monolithic integration of MoS2 quantum sheets on solid electrolyte for self-charging supercapacitor power cell governed by piezo-ionic effect. Sustain. Mater. Technol. 2022, 33, e00459. [Google Scholar] [CrossRef]
- Yin, L.; Cao, M.; Kim, K.N.; Lin, M.; Moon, J.-M.; Sempionatto, J.R.; Yu, J.; Liu, R.; Wicker, C.; Trifonov, A.; et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 2022, 5, 694705. [Google Scholar] [CrossRef]
- Jeong, H.; Sun Cho, D.; Gi Hong, C.; Thanh Nguyen, C.; Seok Moon, M.; Tran, V.-H.; Ku Kwac, L. A novel hierarchical heterostructure derived from alpha iron oxide supported carbon nano-network for high-performance supercapacitor application. J. Electroanal. Chem. 2022, 918, 116492. [Google Scholar] [CrossRef]
- Dong, Y.; Xing, L.; Chen, K.; Wu, X. Porous alpha-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances. Nanomaterials 2018, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Cheng, Q.; Qian, Y.; He, J.; Dong, X. Alkali cation incorporated MnO2 cathode and carbon cloth anode for flexible aqueous supercapacitor with high wide-voltage and power density. Electrochim. Acta 2020, 342, 136046. [Google Scholar] [CrossRef]
- Cai, N.; Fu, J.; Chan, V.; Liu, M.M.; Chen, W.M.; Wang, J.Z.; Zeng, H.; Yu, F.Q. MnCo2O4@nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitors. J. Alloys Compd. 2019, 782, 251–262. [Google Scholar] [CrossRef]
- Demarconnay, L.; Raymundo-Piñero, E.; Béguin, F. Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. J. Power Sources 2011, 196, 580–586. [Google Scholar] [CrossRef]
- Xu, W.; Liu, L.; Weng, W. High-performance supercapacitor based on MnO/carbon nanofiber composite in extended potential windows. Electrochim. Acta 2021, 370, 137713. [Google Scholar] [CrossRef]
- Niu, Y.; Shang, D.; Li, Z. Micro/Nano Energy Storage Devices Based on Composite Electrode Materials. Nanomaterials 2022, 12, 2202. [Google Scholar] [CrossRef]
- Tang, C.; Zhao, K.; Tang, Y.; Li, F.; Meng, Q. Forest-like carbon foam templated rGO/CNTs/MnO2 electrode for high-performance supercapacitor. Electrochim. Acta 2021, 375, 137960. [Google Scholar] [CrossRef]
- Xie, W.; Wang, J.; Long, X.; Wang, X.; Zou, S.; Zhang, L.; Xu, H.; Fu, Y.; Liu, D.; Li, Y.; et al. One-step construction of δ-MnO2 cathodes with an interconnected nanosheet structure on graphite paper for high-performance aqueous asymmetric supercapacitors. J. Energy Storage 2021, 35, 102308. [Google Scholar] [CrossRef]
- Song, Y.; Yang, J.; Wang, K.; Haller, S.; Wang, Y.; Wang, C.; Xia, Y. In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. Carbon 2016, 96, 955–964. [Google Scholar] [CrossRef]
- Liu, J.; Wickramaratne, N.P.; Qiao, S.Z.; Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 2015, 14, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Yavtushenko, I.O.; Makhmud-Akhunov, M.Y.; Sibatov, R.T.; Kitsyuk, E.P.; Svetukhin, V.V. Temperature-Dependent Fractional Dynamics in Pseudo-Capacitors with Carbon Nanotube Array/Polyaniline Electrodes. Nanomaterials 2022, 12, 739. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhou, S.; Zhao, N.; Wong, C.-P. Template-grown graphene/porous Fe2O3 nanocomposite: A high-performance anode material for pseudocapacitors. Nano Energy 2015, 15, 719–728. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Q.; Chen, L.; Yang, S.; Zhao, P.; Yan, Q. Controlled synthesis of Fe3O4 microparticles with interconnected 3D network structures for high-performance flexible solid-state asymmetric supercapacitors. J. Alloys Compd. 2022, 918, 165731. [Google Scholar] [CrossRef]
- Samal, R.; Dash, B.; Sarangi, C.K.; Sanjay, K.; Subbaiah, T.; Senanayake, G.; Minakshi, M. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co3O4 Nanocubes for Supercapacitor Applications. Nanomaterials 2017, 7, 356. [Google Scholar] [CrossRef] [Green Version]
- Minakshi, M.; Mitchell, D.R.G.; Munnangi, A.R.; Barlow, A.J.; Fichtner, M. New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices. Nanoscale 2018, 10, 13277–13288. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Minakshi Sundaram, M.; Watcharatharapong, T.; Laird, D.; Euchner, H.; Ahuja, R. Zn Metal Atom Doping on the Surface Plane of One-Dimesional NiMoO4 Nanorods with Improved Redox Chemistry. ACS Appl. Mater. Interfaces 2020, 12, 44815–44829. [Google Scholar] [CrossRef]
- Baskar, S.; Meyrick, D.; Ramakrishnan, K.S.; Minakshi, M. Facile and large scale combustion synthesis of α-CoMoO4: Mimics the redox behavior of a battery in aqueous hybrid device. Chem. Eng. J. 2014, 253, 502–507. [Google Scholar] [CrossRef] [Green Version]
- Pathak, M.; Jose, J.R.; Chakraborty, B.; Rout, C.S. High performance supercapacitor electrodes based on spinel NiCo2O4@MWCNT composite with insights from density functional theory simulations. J. Chem. Phys. 2020, 152, 064706. [Google Scholar] [CrossRef]
- Nithya, V.D.; Arul, N.S. Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J. Power Sources 2016, 327, 297–318. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Z.; Xiao, J.; Cen, W.; Yuan, S. Polypyrrole-encapsulated Fe2O3 nanotube arrays on a carbon cloth support: Achieving synergistic effect for enhanced supercapacitor performance. Electrochim. Acta 2021, 386, 138486. [Google Scholar] [CrossRef]
- Dong, T.; Deng, T.; Chu, X.; Qin, T.; Wang, H.; Wang, Z.; Zhang, W.; Zheng, W. Carbon intermediate boosted Fe-ZIF derived alpha-Fe2O3 as a high-performance negative electrode for supercapacitors. Nanotechnology 2020, 31, 135403. [Google Scholar] [CrossRef]
- Han, F.; Xu, J.; Zhou, J.; Tang, J.; Tang, W. Oxygen vacancy-engineered Fe2O3 nanoarrays as free-standing electrodes for flexible asymmetric supercapacitors. Nanoscale 2019, 11, 12477–12483. [Google Scholar] [CrossRef]
- Bai, J.; Xu, H.; Chen, G.; Lv, W.; Ni, Z.; Wang, Z.; Yang, J.; Qin, H.; Zheng, Z.; Li, X. Facile fabrication of α-Fe2O3/porous g-C3N4 heterojunction hybrids with enhanced visible-light photocatalytic activity. Mater. Chem. Phys. 2019, 234, 75–80. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, W.; Wang, G. The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 6662–6670. [Google Scholar] [CrossRef]
- Yue, L.; Zhang, S.; Zhao, H.; Wang, M.; Mi, J.; Feng, Y.; Wang, D. Microwave-assisted one-pot synthesis of Fe2O3/CNTs composite as supercapacitor electrode materials. J. Alloys Compd. 2018, 765, 1263–1266. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Xiao, J.; Tian, X.; Yuan, S. Enhancing electrochemical performance of ultrasmall Fe2O3-embedded carbon nanotubes via combusting-induced high-valence dopants. J. Mater. Sci. Technol. 2023, 134, 142–150. [Google Scholar] [CrossRef]
- Dong, K.; Yang, Z.; Shi, D.; Chen, M.; Dong, W. Nitrogen-doped carbon boosting Fe2O3 anode performance for supercapacitors. J. Mater. Sci. Mater. Electron. 2022, 33, 13547–13557. [Google Scholar] [CrossRef]
- Palem, R.R.; Ramesh, S.; Yadav, H.M.; Kim, J.H.; Sivasamy, A.; Kim, H.S.; Kim, J.-H.; Lee, S.-H.; Kang, T.J. Nanostructured Fe2O3@nitrogen-doped multiwalled nanotube/cellulose nanocrystal composite material electrodes for high-performance supercapacitor applications. J. Mater. Res. Technol. 2020, 9, 7615–7627. [Google Scholar] [CrossRef]
- Wang, H.; Li, R.; Li, M.; Li, Z. Flower-like Fe2O3@multiple graphene aerogel for high-performance supercapacitors. J. Alloys Compd. 2018, 742, 759–768. [Google Scholar] [CrossRef]
- Liu, L.; Lang, J.; Zhang, P.; Hu, B.; Yan, X. Facile Synthesis of Fe2O3 Nano-Dots@Nitrogen-Doped Graphene for Supercapacitor Electrode with Ultralong Cycle Life in KOH Electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 9335–9344. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Gui, X.; Lin, Z.; Zheng, Y.; Liu, M.; Zhan, R.; Zhu, Y.; Tang, Z. Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 20927–20934. [Google Scholar] [CrossRef]
- Chen, L.-F.; Yu, Z.-Y.; Ma, X.; Li, Z.-Y.; Yu, S.-H. In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors. Nano Energy 2014, 9, 345–354. [Google Scholar] [CrossRef]
- Li, X.; Liu, K.; Liu, Z.; Wang, Z.; Li, B.; Zhang, D. Hierarchical porous carbon from hazardous waste oily sludge for all-solid-state flexible supercapacitor. Electrochim. Acta 2017, 240, 43–52. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, S.Q.Y.; Gao, W.; Liu, J. Large-Scale Porous Hematite Nanorod Arrays: Direct Growth on Titanium Foil and Reversible Lithium Storage. J. Phys. Chem. C 2010, 114, 21158–21164. [Google Scholar] [CrossRef]
- Hung, S.C.; Chou, Y.R.; Dong, C.D.; Tsai, K.C.; Yang, W.D. Enhanced Activity of Hierarchical Nanostructural Birnessite-MnO2-Based Materials Deposited onto Nickel Foam for Efficient Supercapacitor Electrodes. Nanomaterials 2020, 10, 1933. [Google Scholar] [CrossRef]
- Vayssieres, L.; Beermann, N.; Lindquist, S.-E.; Hagfeldt, A. Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides. Chem. Mater. 2000, 13, 233–235. [Google Scholar] [CrossRef]
- Kore, R.M.; Lokhande, B.J. A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J. Alloys Compd. 2017, 725, 129–138. [Google Scholar] [CrossRef]
- Quan, H.; Cheng, B.; Xiao, Y.; Lei, S. One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 2016, 286, 165–173. [Google Scholar] [CrossRef]
- Feng, H.; Hu, H.; Dong, H.; Xiao, Y.; Cai, Y.; Lei, B.; Liu, Y.; Zheng, M. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J. Power Sources 2016, 302, 164–173. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, X.; Qian, G.; Watkins, J.J. Additive-Driven Self-Assembly of Well-Ordered Mesoporous Carbon/Iron Oxide Nanoparticle Composites for Supercapacitors. Chem. Mater. 2014, 26, 2128–2137. [Google Scholar] [CrossRef]
- Wang, M.; Liu, H.; Zhai, D.D.; Chen, X.Y.; Zhang, Z.J. In-situ synthesis of highly nitrogen, sulfur co-doped carbon nanosheets from melamine-formaldehyde-thiourea resin with improved cycling stability and energy density for supercapacitors. J. Power Sources 2019, 416, 79–88. [Google Scholar] [CrossRef]
- Chavhan, M.P.; Sethi, S.R.; Ganguly, S. Vertically aligned MnO2 nanosheet electrode of controllable mass loading, counter to nanoparticulate carbon film electrode for use in supercapacitor. J. Energy Storage 2020, 32, 101851. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef]
- Feng, R.; Li, M.; Wang, Y.; Lin, J.; Zhu, K.; Wang, J.; Wang, C.; Chu, P.K. High-performance multi-dimensional nitrogen-doped N+MnO2@TiC/C electrodes for supercapacitors. Electrochim. Acta 2021, 370, 137716. [Google Scholar] [CrossRef]
- Li, X.; Han, D.; Gong, Z.; Wang, Z. Nest-Like MnO2 Nanowire/Hierarchical Porous Carbon Composite for High-Performance Supercapacitor from Oily Sludge. Nanomaterials 2021, 11, 2715. [Google Scholar] [CrossRef]
- Yang, M.; Lee, K.G.; Lee, S.J.; Lee, S.B.; Han, Y.K.; Choi, B.G. Three-Dimensional Expanded Graphene-Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 22364–22371. [Google Scholar] [CrossRef]
- Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano 2015, 9, 5198–5207. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Wei, B. High-performance all-solid-state asymmetric stretchable supercapacitors based on wrinkled MnO2/CNT and Fe2O3/CNT macrofilms. J. Mater. Chem. A 2016, 4, 12289–12295. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Liu, W.; Shen, W. Honeycomb-like composite structure for advanced solid state asymmetric supercapacitors. Chem. Eng. J. 2017, 326, 518–527. [Google Scholar] [CrossRef]
- Yang, S.; Song, X.; Zhang, P.; Gao, L. Heating-rate-induced porous alpha-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 75–79. [Google Scholar] [CrossRef]
- Yang, S.; Song, X.; Zhang, P.; Sun, J.; Gao, L. Self-Assembled alpha-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors. Small 2014, 10, 2270–2279. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, A.; Huang, Z.; Li, L.; Bai, H. A Facile Method to Prepare Three-Dimensional Fe2O3/Graphene Composites as the Electrode Materials for Supercapacitors. Chin. J. Chem. 2016, 34, 67–72. [Google Scholar] [CrossRef]
- Zhao, P.; Li, W.; Wang, G.; Yu, B.; Li, X.; Bai, J.; Ren, Z. Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J. Alloys Compd. 2014, 604, 87–93. [Google Scholar] [CrossRef]
- Song, Z.; Liu, W.; Xiao, P.; Zhao, Z.; Liu, G.; Qiu, J. Nano-iron oxide (Fe2O3)/three-dimensional graphene aerogel composite as supercapacitor electrode materials with extremely wide working potential window. Mater. Lett. 2015, 145, 44–47. [Google Scholar] [CrossRef]
- Xia, H.; Hong, C.Y.; Li, B.; Zhao, B.; Lin, Z.X.; Zheng, M.B.; Savilov, S.V.; Aldoshin, S.M. Facile Synthesis of Hematite Quantum-Dot/Functionalized Graphene-Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors. Adv. Funct. Mater. 2015, 25, 627–635. [Google Scholar] [CrossRef]
- Zhang, S.W.; Yin, B.S.; Wang, Z.B.; Peter, F. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and alpha-Fe2O3 nanorods. Chem. Eng. J. 2016, 306, 193–203. [Google Scholar] [CrossRef]
- Shanmugavani, A.; Selvan, R.K. Microwave assisted reflux synthesis of NiCo2O4/NiO composite: Fabrication of high performance asymmetric supercapacitor with Fe2O3. Electrochim. Acta 2016, 189, 283–294. [Google Scholar] [CrossRef]
- Yu, X.L.; Deng, J.J.; Zhan, C.Z.; Lv, R.T.; Huang, Z.H.; Kang, F.Y. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochim. Acta 2017, 228, 76–81. [Google Scholar] [CrossRef]
- Ma, W.; Nan, H.; Gu, Z.; Geng, B.; Zhang, X. Superior performance asymmetric supercapacitors based on ZnCo2O4@MnO2 core-shell electrode. J. Mater. Chem. A 2015, 3, 5442–5448. [Google Scholar] [CrossRef]
- Wang, Y.D.; Shen, C.; Niu, L.Y.; Li, R.Z.; Guo, H.T.; Shi, Y.X.; Li, C.; Liu, X.J.; Gong, Y.Y. Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-performance aqueous asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9977–9985. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.P.; Liu, X.S.; Zhang, X.; Tian, Y.L.; Liu, X.X.; Zhao, J.P.; Li, Y. Assembly of flexible CoMoO4@NiMoO4 center dot xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors. Sci. Rep. 2017, 7, 41088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.J.; Liu, M.C.; Kong, L.B.; Wang, D.; Hu, Y.M.; Han, W.; Kang, L. Advanced asymmetric supercapacitors based on Ni3(PO4)2@GO and Fe2O3@GO electrodes with high specific capacitance and high energy density. Rsc Adv. 2015, 5, 41721–41728. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Zhang, B.; Han, D.; Gong, Z.; Li, X. Fe2O3/Porous Carbon Composite Derived from Oily Sludge Waste as an Advanced Anode Material for Supercapacitor Application. Nanomaterials 2022, 12, 3819. https://doi.org/10.3390/nano12213819
Tian S, Zhang B, Han D, Gong Z, Li X. Fe2O3/Porous Carbon Composite Derived from Oily Sludge Waste as an Advanced Anode Material for Supercapacitor Application. Nanomaterials. 2022; 12(21):3819. https://doi.org/10.3390/nano12213819
Chicago/Turabian StyleTian, Shubing, Baoling Zhang, Dong Han, Zhiqiang Gong, and Xiaoyu Li. 2022. "Fe2O3/Porous Carbon Composite Derived from Oily Sludge Waste as an Advanced Anode Material for Supercapacitor Application" Nanomaterials 12, no. 21: 3819. https://doi.org/10.3390/nano12213819
APA StyleTian, S., Zhang, B., Han, D., Gong, Z., & Li, X. (2022). Fe2O3/Porous Carbon Composite Derived from Oily Sludge Waste as an Advanced Anode Material for Supercapacitor Application. Nanomaterials, 12(21), 3819. https://doi.org/10.3390/nano12213819