Exploration of Single and Co-Toxic Effects of Polypropylene Micro-Plastics and Cadmium on Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Solutions
2.2. Seed Germination Test
2.3. Enzymatic Activity
2.3.1. Catalase Activity
2.3.2. Peroxidase Activity
2.3.3. Superoxide Dismutase Activity
2.4. Statistical Analysis
- UNIANOVA Shoot BY CdPP
- /METHOD = SSTYPE (3)
- /INTERCEPT = INCLUDE
- /PLOT = PROFILE (Cd × PPPP × Cd)
- /EMMEANS = TABLES (Cd × PP) COMPARE(Cd)ADJ(SIDAK)
- /EMMEANS = TABLES (Cd × PP) COMPARE(PP)ADJ(SIDAK)
- /PRINT = DESCRIPTIVE
- /CRITERIA = ALPHA (0.05)
- /DESIGN = PP × Cd
- (a)
- if I − J < 0, I is more toxic than J whereas if I − J > 0, it means I is less toxic than J
- (b)
- if a group without Cd, 13μm PP has a larger effect on seed germination than others
- (c)
- if a group with Cd, 6.5μm PP has a larger effect on seed germination than others
3. Results
3.1. Germination Parameters of Rice Seedlings
3.1.1. Seed Vigor/Viability
3.1.2. Germination Vigor
3.1.3. Germination Index (GI)
3.1.4. Vigor Index
3.1.5. Mean/Average Germination Time
3.1.6. Germination Rate
- (a)
- Except for 13 µm PP MP + Cd treatment, other treatments resulted in significant difference (at p ≤ 0.05) in the germination potential of rice seeds as compared to the CK.
- (b)
- When compared with the Cd treatment, the 13 µm PP MP + Cd treatment with CK has no significant difference, whereas for other treatments it shows a significant mean difference at p ≤ 0.05.
- (c)
- Single Cd treatment compared with 6.5 µm PP MP, 13 µm PP MP + Cd treatments has no significant mean difference, while for other treatments has a significant difference (at p ≤ 0.05).
- (d)
- The 6.5 µm PP MP treatment, when compared with Cd treatment, 13 µm PP treatment has no significant difference, but for other treatments it has a significant difference (at p ≤ 0.05).
- (e)
- The 13 µm PP MP treatment, when compared with the 6.5 µm PP MP, 6.5 µm PP MP + Cd treatments showed no significant differences, but for other treatments it has a significant difference at p ≤ 0.05.
3.2. Growth Parameters of Rice Seedlings
3.2.1. Growth of Stem and Root of Rice Seedlings
3.2.2. Root and Stem Length of 3d and 7d Rice Seedlings
3.2.3. Dry and Fresh Weight of Rice Seedlings
3.2.4. Catalase (CAT) Activity
3.2.5. Peroxidase (POD) Activity
3.2.6. Superoxide Dismutase (SOD) Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trevor, M.L. Introduction to Plastic Waste and Recycling. In Plastic Waste and Recycling; Academic Press: New York, NY, USA, 2020; pp. 3–12. [Google Scholar]
- Thompson, R.C.; Ylva, O.; Mitchell, R.P.; Anthony, D.; Rowland, S.J.; John, A.W.G.; Daniel, M.G.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Weithmann, N.; Möller, J.N.; Löder, M.G.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nizzetto, L.; Langaas, S.; Futter, M. Pollution: Do microplastics spill on to farm soils? Nature 2016, 537, 488. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Wang, J.; Zhang, H.; Shi, H.; Fei, Y.; Huang, S.; Tong, Y.; Wen, D.; Luo, Y.; Barceló, D. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay east China: Multiple sources other than plastic mulching film. J. Hazard. Mater. 2019, 388, 121814. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, H.; Hollman, P.C.; Peters, R.J. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain. Environ. Sci. Technol. 2015, 49, 8932–8947. [Google Scholar] [CrossRef]
- Xu, B.; Liu, F.; Cryder, Z.; Huang, D.; Lu, Z.; He, Y.; Wang, H.; Lu, Z.; Brookes, P.C.; Tang, C. Microplastics in the soil environment: Occurrence, risks, interactions and fate—A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2175–2222. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [Green Version]
- Giorgetti, L.; Spano, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellani, L.; Ruffini, C.M. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol. Biochem. 2020, 149, 170–177. [Google Scholar] [CrossRef]
- Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2022, 56, 2245–2251. [Google Scholar] [CrossRef]
- Gulf Petrochemicals and Chemicals Association. GCC Petrochemicals & Chemicals Industry; Gulf Petrochemicals and Chemicals Association: Dubai, UAE, 2012. [Google Scholar]
- Our Endangered World. Is Polypropylene Bad for the Environment. 2021. Available online: https://www.ourendangeredworld.com/eco/is-polypropylene-bad/ (accessed on 15 October 2022).
- Gong, W.; Zhang, W.; Jiang, M.; Li, S.; Liang, G.; Bu, Q.; Xu, L.; Zhu, H.; Lu, A. Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Sci. Total Environ. 2021, 796, 148750. [Google Scholar] [CrossRef]
- Wu, X.; Hou, H.; Liu, Y.; Yin, S.; Bian, S.; Liang, S.; Wan, C.; Yuan, S.; Xiao, K.; Liu, B.; et al. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: A field study. J. Hazard. Mater. 2022, 422, 126834. [Google Scholar]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Huerta, L.E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobučar, G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia Faba. Environ. Pollut. 2019, 250, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.-R.; Wang, C.-X.; Dong, F.-Q.; Gao, Z.-Y.; Zhang, C.-J.; Zhang, X.-J.; Fu, L.-M.; Wang, Y.; Zhang, J.-P. Uptake and translocation of styrene maleic anhydride nanoparticles in Murraya Exotica plants as revealed by noninvasive, real-time optical bio-imaging. Environ. Sci. Technol. 2019, 53, 1471–1481. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Liu, Y.; Song, Z. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in Lettuce (Lactuca sativa L. Var. Ramosa Hort). Chemosphere 2019, 237, 124482. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Sun, X.-D.; Yuan, X.-Z.; Jia, Y.; Feng, L.-J.; Zhu, F.-P.; Dong, S.-S.; Liu, J.; Kong, X.; Tian, H.; Duan, J.-L.; et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 2020, 15, 755–760. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Li, Z.Y.; Lu, X.N.; Duan, Q.N.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Casado, M.; Anawar, H.M.; Garcia-Sanchez, A.; Santa Regina, I. Cadmium and zinc in polluted mining soils and uptake by plants (El Losar mine, Spain). Int. Environ. Pollut. 2008, 33, 146–159. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Tinkov, A.A.; Gritsenko, V.A.; Skalnaya, M.G.; Cherkasov, S.V.; Aaseth, J.; Skalny, A.V. Gut as a target for cadmium toxicity. Environ. Pollut. 2018, 235, 429–434. [Google Scholar] [CrossRef]
- Sirot, V.; Samieri, C.; Volatier, L.; Leblanc, C. Cadmium dietary intake and biomarker data in French high seafood consumers. Expo. Sci. Environ. Epidemiol. 2008, 18, 400–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.; Carey, M.; Meharg, C.; Williams, P.N.; Signes-Pastor, A.J.; Triwardhani, E.A.; Pandiangan, F.I.; Campbell, K.; Elliott, C.; Marwa, E.M.; et al. Rice grain cadmium concentrations in the global supply-chain. Expo. Health 2020, 12, 869–876. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Wang, C.; Li, J.; Wei, J.; Liu, Y.; Hu, L.; Liu, H.; Bian, H.; Sun, D. Effect of polyethylene (LDPE) microplastic on remediation of cadmium contaminated soil by Solanum nigrum L. J. Geosci. Environ. Prot. 2022, 10, 49–64. [Google Scholar]
- Kalcíkova, G.; Skalar, T.; Marolt, G.; Kokalj, A.J. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res. 2020, 175, 115644. [Google Scholar] [CrossRef]
- Khalid, N.; Aqeel, M.; Noman, A. Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environ. Pollut. 2020, 267, 115653. [Google Scholar] [CrossRef]
- Tang, S.; Lin, L.; Wang, X.; Feng, A.; Yu, A. Pb (II) uptake onto nylon microplastics: Interaction mechanism and adsorption performance. J. Hazard. Mater. 2020, 386, 121960. [Google Scholar] [CrossRef]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants—A critical review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wangjin, X.; Wang, Y.; Meng, G.; Chen, Y. The adsorption behavior of metals in aqueous solution by microplastics affected by UV radiation. J. Environ. Sci. 2020, 87, 272–280. [Google Scholar] [CrossRef]
- Wang, F.; Yang, W.; Cheng, P.; Zhang, S.; Zhang, S.; Jiao, W.; Sun, Y. Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere 2019, 235, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Han, B.; Sun, Y.; Wang, F. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J. Hazard. Mater. 2020, 388, 121775. [Google Scholar] [CrossRef] [PubMed]
- Enyoh, C.E.; Wang, Q.; Eze, V.C.; Rabin, M.H.; Rakib, M.R.J.; Verla, A.W.; Ibe, F.C.; Duru, C.E.; Verla, E.N. Assessment of potentially toxic metals adsorbed on small macroplastics in urban roadside soils in southeastern Nigeria. J. Hazard Mater. Adv. 2022, 7, 100122. [Google Scholar] [CrossRef]
- Khalid, N.; Aqeel, M.; Noman, A.; Khan, S.M.; Akhter, N. Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ. Pollut. 2021, 290, 118104. [Google Scholar] [CrossRef]
- Shen, M.; Song, B.; Zeng, G.; Zhang, Y.; Teng, F.; Zhou, C. Surfactant changes lead adsorption behaviors and mechanisms on microplastics. Chem. Eng. J. 2021, 405, 126989. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Jiang, W.; Chen, J.; Chen, Y.; Zhang, X.; Wang, G. Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity. Chemosphere 2021, 266, 128979. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Xu, X.; Xian, Z.; Zhang, Y.; Wang, C.; Gu, C. Joint toxicity of aged polyvinyl chloride microplastics and cadmium to the wheat plant. Environ. Chem. 2021, 40, 2633–2639. [Google Scholar]
- Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Sun, Y. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 2020, 254, 126791. [Google Scholar] [CrossRef]
- Zong, X.; Zhang, J.; Zhu, J.; Zhang, L.; Jiang, L.; Yin, Y.; Guo, H. Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.). Ecotox. Environ. Safe. 2021, 217, 112217. [Google Scholar] [CrossRef]
- Jia, H.; Wu, D.; Yu, Y.; Han, S.; Sun, L.; Li, M. Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L.). Chemosphere 2022, 288, 132576. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, X.; Jiang, H.; Li, X.; Li, W.; Cao, Y. Antidote or Trojan horse for submerged macrophytes: Role of microplastics in copper toxicity in aquatic environments. Water Res. 2022, 216, 118354. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Kaur, M.; Yao, Z.; Chen, T.; Xu, M. Phytotoxic effects of polyethylene microplastics on the growth of food crops soybean (Glycine max) and mung bean (Vigna radiata). Int. J. Environ. Res. Public Health 2021, 182, 10629. [Google Scholar] [CrossRef]
- Johansson, L.H.; Borg, L.A.H. A spectrophotometric method for determination of catalase activity in small tissue samples. Anal. Biochem. 1988, 174, 331–336. [Google Scholar] [CrossRef]
- Reuveni, R. Peroxidase activity as a biochemical marker for resistance of muskmelon (Cucumismelo) to Pseudoperono sporacubensis. Phytopathology 1992, 82, 749–753. [Google Scholar] [CrossRef]
- Doerge, D.R.; Divi, R.L.; Churchwell, M.I. Identification of the colored guaiacol oxidation product produced by peroxidases. Anal. Biochem. 1997, 250, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Spitz, D.R.; Oberley, L.W. An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal. Biochem. 1989, 179, 8–18. [Google Scholar] [CrossRef]
- Masayasu, M.; Hiroshi, Y. A simplified assay method of superoxide dismutase activity for clinical use. Clinica Chimica Acta 1979, 92, 337–342. [Google Scholar] [CrossRef]
- Xin, X.; Zhao, F.; Rho, J.Y.; Goodrich, S.L.; Sumerlin, B.S.; Hea, Z. Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. Sci. Total Environ. 2020, 745, 141055. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. Microplastic particles increase arsenic toxicity to rice seedlings. Environ. Pollut. 2020, 259, 113892. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.; Chen, L.; Chao, J.; Teng, J.; Wang, Q. Microplastics in soils: A review of possible sources, analytical methods, and ecological impacts. J. Chem. Technol. Biotechnol. 2020, 95, 2052–2068. [Google Scholar] [CrossRef]
- Kim, D.; An, S.; Kim, L.; Byeon, Y.M.; Lee, J.; Choi, M.-J.; An, Y.-J. Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. J. Hazard. Mater. 2022, 436, 129194. [Google Scholar] [CrossRef]
- Calero, E.; West, S.H.; Hinson, K. Water absorption of soyabean seeds and associated causal factors. Crop. Sci. 1981, 21, 926–933. [Google Scholar] [CrossRef]
- Debeaujon, I.; Leon-Kloosterziel, K.M.; Koornneef, M. Influence of testa on seed dormany, germination and longevity in Arabidopsis. Plant Physiol. 2000, 122, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Liu, Y.; Yin, S.; Xiao, K.; Xiong, Q.; Bian, S.; Liang, S.; Hou, H.; Hu, J.; Yang, J. Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environ. Pollut. 2020, 266, 115159. [Google Scholar] [CrossRef]
- Lian, J.; Liu, W.; Meng, L.; Wu, J.; Chao, L.; Zeb, A.; Sun, Y. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environ. Pollut. 2021, 280, 116978. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Adams, C.A.; Sun, Y. Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation. Toxics 2020, 8, 36. [Google Scholar] [CrossRef]
- Pignattelli, S.; Broccoli, A.; Renzi, M. Physiological responses of garden cress (L. sativum) to different types of microplastics. Sci. Total Environ. 2020, 727, 138609. [Google Scholar] [CrossRef]
- Patil, S.; Bafana, A.; Naoghare, P.K.; Krishnamurthi, K.; Sivanesan, S. Environmental prevalence, fate, impacts, and mitigation of microplastics—A critical review on present understanding and future research scope. Environ. Sci. Pollut. Res. 2021, 28, 4951–4974. [Google Scholar] [CrossRef]
- Xu, Z.; Bai, X.; Li, Y.; Weng, Y.; Li, F. New insights into the decrease in Cd2+ bioavailability in sediments by microplastics: Role of geochemical properties. J. Hazard. Mater. 2023, 442, 130103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Y.; Qiu, T.; Duan, C.; Chen, L.; Zhao, S.; Zhang, X.; Fang, L. Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L. Sci. Total Environ. 2021, 852, 158353. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, D.; Chae, Y.; Kim, D.; An, Y.J. Crop-dependent changes in water absorption of expanded polystyrene in soil environments. Chemosphere 2019, 219, 345–350. [Google Scholar] [CrossRef]
- Maity, S.; Chatterjee, A.; Guchhait, R.; De, S.; Pramanick, K. Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L. J. Hazard. Mater. 2020, 385, 121560. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Bao, Q.; Gao, M.; Qiu, W.; Song, Z. A novel mechanism study of microplastic and As co-contamination on indica rice (Oryza sativa L.). J. Hazard. Mater. 2022, 421, 126694. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. J. Hazard. Mater. 2021, 411, 125055. [Google Scholar] [CrossRef]
- Pehlivan, N.; Gedik, K. Particle size-dependent biomolecular footprints of interactive microplastics in maize. Environ. Pollut. 2021, 277, 116772. [Google Scholar] [CrossRef]
- Yang, M.; Huang, D.-Y.; Tian, Y.-B.; Zhu, Q.-H.; Zhang, Q.; Zhu, H.-H.; Xu, C. Influences of different source microplastics with different particle sizes and application rates on soil properties and growth of Chinese cabbage (Brassica chinensis L.). Ecotoxicol. Environ. Saf. 2021, 222, 112480. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Xu, Y.; Liu, Y.; Wang, S.; Wang, C.; Dong, Y.; Song, Z. Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phytotoxicity in lettuce. Environ. Pollut. 2021, 268, 115870. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Lu, C.; Mai, L.; Bao, L.; Liu, L.; Zeng, E.Y. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. J. Hazard Mater. 2021, 401, 123412. [Google Scholar] [CrossRef] [PubMed]
- Markovic, M.S.; Ilic, B.S.; Miladinovic, D.L.; Stamenkovic, S.M.; Trajkovic, R.; Stankov-Jovanovic, V.P.; Djelic, G.T. Activity of a catalase enzyme in plants from the burned areas of the Vidlic mountain Beech forest. Oxid. Commun. 2015, 38, 860–868. [Google Scholar]
- Nesic, M.; Trajkovic, R.; Tosic, S.; Markovic, M. The impact of air pollution on the activity of the enzyme catalase in underground and above-ground organs of medicinal plants from Pirot surrounding areas. In Proceedings of the of the 8th Symposium on the Flora of Southeastern Serbia and Neighboring Regions, Nis, Serbia, 20–24 June 2005; pp. 81–86. [Google Scholar]
- Li, Z.; Li, R.; Li, Q.; Zhou, J.; Wang, G. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere 2020, 255, 127041. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Wu, J.; Zeb, A.; Zheng, S.; Ma, T.; Peng, F.; Tang, J.; Liu, W. Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L.)? Environ. Pollut. 2020, 263, 114498. [Google Scholar] [CrossRef]
- Fan, P.; Yu, H.; Xi, B.; Tan, W. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: Are biodegradable plastics substitute or threat? Environ. Int. 2022, 163, 107244. [Google Scholar] [CrossRef] [PubMed]
- Kalcíkova, G.; Zgajnar, A.G.; Kladnik, A.; Jemec, A. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environ. Pollut. 2017, 230, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Verla, A.W.; Enyoh, C.E.; Verla, E.N.; Nwarnorh, K.O. Microplastic–toxic chemical interaction: A review study on quantified levels, mechanism and implication. SN Appl. Sci. 2019, 1, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Wu, C.; Xue, Q.; Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 2019, 654, 576–582. [Google Scholar] [CrossRef]
Treatment | GV (%) | GR (%) | GI on Day 3rd | GI on Day 7th | VI | MGT on Day 3rd | MGT on Day 7th |
---|---|---|---|---|---|---|---|
CK | 97% ± 6% a | 91% ± 9% a | 5.09 ± 0.51 a | 11.45 ± 1.18 a | 0.23 ± 0.01 a | 2.56 ± 0.06 a | 2.66 ± 0.04 a |
Cd | 67% ± 6% bc | 88% ± 8% a | 3.29 ± 0.17 b | 9.26 ± 0.81 ab | 0.19 ± 0.01 b | 2.77 ± 0.06 a | 3.07 ± 0.28 ab |
13 μm PP | 47% ± 6% de | 86% ± 7% a | 2.06 ± 0.19 c | 8.92 ± 2.06 ab | 0.18 ± 0.01 b | 2.92 ± 0.14 a | 3.25 ± 0.25 b |
6.5 μm PP | 60% ± 0% cd | 79% ± 5% a | 2.50 ± 0.00 c | 8.85 ± 0.71 ab | 0.18 ± 0.01 b | 2.83 ± 0.17 a | 3.27 ± 0.24 b |
13 μm PP + Cd | 73% ± 12% ab | 87% ± 12% a | 3.78 ± 0.67 b | 9.49 ± 1.16 ab | 0.20 ± 0.01 b | 2.56 ± 0.27 a | 3.47 ± 0.15 b |
6.5 μmPP + Cd | 37% ± 6% e | 88% ± 4% a | 2.11 ± 0.19 c | 6.97 ± 1.20 b | 0.14 ± 0.01 c | 2.69 ± 0.34 a | 3.00 ± 0.00 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, M.; Shen, C.; Wang, L.; Xu, M. Exploration of Single and Co-Toxic Effects of Polypropylene Micro-Plastics and Cadmium on Rice (Oryza sativa L.). Nanomaterials 2022, 12, 3967. https://doi.org/10.3390/nano12223967
Kaur M, Shen C, Wang L, Xu M. Exploration of Single and Co-Toxic Effects of Polypropylene Micro-Plastics and Cadmium on Rice (Oryza sativa L.). Nanomaterials. 2022; 12(22):3967. https://doi.org/10.3390/nano12223967
Chicago/Turabian StyleKaur, Mandeep, Chengcheng Shen, Lin Wang, and Ming Xu. 2022. "Exploration of Single and Co-Toxic Effects of Polypropylene Micro-Plastics and Cadmium on Rice (Oryza sativa L.)" Nanomaterials 12, no. 22: 3967. https://doi.org/10.3390/nano12223967