Size-Dependent Superconducting Properties of In Nanowire Arrays
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Morosh, V.; Linek, J.; Müller, B.; Martínez-Pérez, M.J.; Wolter, S.; Weimann, T.; Beyer, J.; Schurig, T.; Kieler, O.; Zorin, A.B.; et al. Transport and Noise Properties of sub-100-nm Planar Nb Josephson Junctions with Metallic Hf-Ti Barriers for nano-SQUID Applications. Phys. Rev. Appl. 2020, 14, 054072. [Google Scholar] [CrossRef]
- Jabdaraghi, R.N.; Peltonen, J.T.; Saira, O.P.; Pekola, J.P. Low-temperature characterization of Nb-Cu-Nb weak links with Ar ion-cleaned interfaces. Appl. Phys. Lett. 2016, 108, 042604. [Google Scholar] [CrossRef] [Green Version]
- Collienne, S.; Raes, B.; Keijers, W.; Linek, J.; Koelle, D.; Kleiner, R.; Kramer, B.G.; Van de Vondel, J.; Silhanek, A.V. Nb-Based Nanoscale Superconducting Quantum Interference Devices Tuned by Electroannealing. Phys. Rev. Appl. 2020, 15, 034016. [Google Scholar] [CrossRef]
- Ronzania, A.; Altimiras, C.; Giazotto, F. Balanced double-loop mesoscopic interferometer based on Josephson proximity nanojunctions. Appl. Phys. Lett. 2014, 104, 032601. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.G.; Lim, S.K.; Lee, S.; Lee, S.K.; Cho, C.; Lee, Y.G.; Hwang, H.J.; Kim, Y.; Choi, H.J.; Choe, S.H. Effects of multi-layer graphene capping on Cu interconnects. Nanotechnology 2014, 24, 115707. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.H.; Wang, L.; Guo, Z.; Chen, X.; Liu, J.; Huang, X.J. Copper Nanowires as Nanoscale Interconnects: Their Stability, Electrical Transport, and Mechanical Properties. ACS Nano 2015, 9, 241–250. [Google Scholar] [CrossRef]
- Skryabina, O.V.; Egorov, S.V.; Goncharova, A.S.; Klimenko, A.A.; Kozlov, S.N.; Ryazanov, V.V.; Bakurskiy, S.V.; Kupriyanov, M.Y.; Golubov, A.A.; Napolskii, K.S.; et al. Josephson coupling across a long single-crystalline Cu nanowire. Appl. Phys. Lett. 2017, 110, 222605. [Google Scholar] [CrossRef]
- De Cecco, A.; Calvez, K.L.; Sacépé, B.; Winkelmann, C.B.; Courtois, H. Interplay between electron overheating and ac Josephson effect. Phys. Rev. B 2016, 93, 180505. [Google Scholar] [CrossRef] [Green Version]
- Kompaniiets, M.; Dobrovolskiy, O.V.; Neetzel, C.; Begun, E.; Porrati, F.; Ensinger, W.; Huth, M. Proximity-induced superconductivity in crystalline Cu and Co nanowires and nanogranular Co structures. J. Appl. Phys. 2014, 116, 073906. [Google Scholar] [CrossRef]
- Jung, M.; Noh, H.; Doh, Y.J.; Song, W.; Chong, Y.; Choi, M.S.; Yoo, Y.; Seo, K.; Kim, N.; Woo, B.C.; et al. Superconducting Junction of a Single-Crystalline Au Nanowire for an Ideal Josephson Device. ACS Nano 2011, 5, 2271–2276. [Google Scholar] [CrossRef]
- Skryabina, O.V.; Kozlov, S.N.; Egorov, S.V.; Klimenko, A.A.; Ryazanov, V.V.; Bakurskiy, S.V.; Kupriyanov, M.Y.; Klenov, N.V.; Soloviev, I.I.; Golubov, A.A.; et al. Anomalous magneto-resistance of Ni-nanowire/Nb hybrid system. Sci. Rep. 2019, 9, 14470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Singh, M.; Tian, M.; Kumar, N.; Liu, B.; Shi, C.; Jain, J.K.; Samarth, N.; Mallouk, T.E.; Chan, M.H.W. Interplay between superconductivity and ferromagnetism in crystalline nanowires. Nat. Phys. 2010, 6, 389–394. [Google Scholar] [CrossRef]
- Thurn-Albrecht, T.; Schotter, J.; Kästle, G.A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C.T.; Tuominen, M.T.; Russell, T.P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126–2129. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ye, S.; Stewart, I.E.; Wiley, B.J. Copper Nanowire Networks with Transparent Oxide Shells That Prevent Oxidation without Reducing Transmittance. ACS Nano 2014, 8, 9673–9679. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Al-Housseiny, T.T.; Kim, B.S.; Cho, H.H.; Stone, H.A. The Race of Nanowires: Morphological Instabilities and a Control Strategy. Nano Lett. 2014, 14, 4395–4399. [Google Scholar] [CrossRef]
- Tian, M.; Wang, J.; Ning, W.; Mallouk, T.E.; Chan, M.H.W. Surface Superconductivity in Thin Cylindrical Bi Nanowire. Nano Lett. 2015, 15, 1487–1492. [Google Scholar] [CrossRef]
- Leontiev, A.P.; Brylev, O.A.; Napolskii, K.S. Arrays of rhodium nanowires based on anodic alumina: Preparation and electrocatalytic activity for nitrate reduction. Electrochim. Acta 2015, 155, 466–473. [Google Scholar] [CrossRef]
- Napolskii, K.S.; Roslyakov, I.V.; Eliseev, A.A.; Petukhov, D.I.; Lukashin, A.V.; Chen, S.F.; Liu, C.P.; Tsirlina, G.A. Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential. Electrochim. Acta 2011, 56, 2378–2384. [Google Scholar] [CrossRef]
- Malysheva, I.V.; Kolmychek, I.A.; Romashkina, A.M.; Leontiev, A.P.; Napolskii, K.S.; Murzina, T.V. Magneto-optical effects in hyperbolic metamaterials based on ordered arrays of bisegmented gold/nickel nanorods. Nanotechnology 2021, 32, 305710. [Google Scholar] [CrossRef]
- Kompaniiets, M.; Dobrovolskiy, O.V.; Neetzel, C.; Ensinger, W.; Huth, M. Superconducting Proximity Effect in Crystalline Co and Cu Nanowires. J. Supercond. Nov. Magn. 2015, 28, 431–436. [Google Scholar] [CrossRef]
- Riminucci, A.; Schwarzacher, W. Coexistence of superconductivity and superparamagnetism in Pb–Co electrodeposited nanowires. Appl. Phys. A 2017, 123, 161. [Google Scholar] [CrossRef] [Green Version]
- Prakash, O.; Kumar, A.; Thamizhavel, A.; Ramakrishnan, S. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure. Science 2016, 355, 52–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, J.Y.; Gutierrez, J.; Lyashchenko, A.; Filipov, V.; Li, J.; Moshchalkov, V.V. Direct visualization of vortex pattern transition in ZrB12 with Ginzburg-Landau parameter close to the dual point. Phys. Rev. B 2014, 90, 184511. [Google Scholar] [CrossRef] [Green Version]
- Córdoba-Camacho, W.Y.; Silva, R.M.; Vagov, A.; Shanenko, A.A.; Albino Aguiar, J.A. Quasi-one-dimensional vortex matter in superconducting nanowires. Phys. Rev. B 2018, 98, 174511. [Google Scholar] [CrossRef]
- Córdoba-Camacho, W.Y.; Silva, R.M.; Shanenko, A.A.; Vagov, A.; Vasenko, A.S.; Lvov, B.G.; Albino Aguiar, J. Spontaneous pattern formation in superconducting films. J. Phys. Condens. Matter 2020, 32, 075403. [Google Scholar] [CrossRef] [Green Version]
- Moura, K.O.; Pirota, K.R.; Béron, F.; Jesus, C.B.R.; Rosa, P.F.S.; Tobia, D.; Pagliuso, P.G.; Lima, O.F. Superconducting Properties in Arrays of Nanostructured β-Gallium. Sci. Rep. 2017, 7, 15306. [Google Scholar] [CrossRef] [Green Version]
- Engbarth, M.A.; Bending, S.J.; Milošević, M.V. Geometry-driven vortex states in type-I superconducting Pb nanowires. Phys. Rev. B 2011, 83, 224504. [Google Scholar] [CrossRef] [Green Version]
- Riminucci, A.; Schwarzacher, W. Magnetic signature of granular superconductivity in electrodeposited Pb nanowires. J. Appl. Phys. 2014, 115, 223910. [Google Scholar] [CrossRef]
- Schoeller, H.; Cho, J. Oxidation and reduction behavior of pure indium. J. Mater. Res. 2009, 24, 386. [Google Scholar] [CrossRef]
- Roberts, B.W. Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data 1976, 5, 581. [Google Scholar] [CrossRef]
- Toxen, A.M. Size Effects in Thin Superconducting Indium Films. Phys. Rev. 1961, 123, 442. [Google Scholar] [CrossRef]
- Mason, P.V.; Gould, R.W. Slow-Wave Structures Utilizing Superconducting Thin-Film Transmission Lines. J. App. Phys. 1969, 40, 2039. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.S.; Baratoff, A. Magnetic Properties of Superconducting Thin Films in the Nonlocal Regime. Phys. Rev. Lett. 1965, 15, 971. [Google Scholar] [CrossRef]
- Lock, J.M.; Bragg, W.L. Penetration of magnetic fields into superconductors III. Measurements on thin films of tin, lead and indium. Proc. R. Soc. Lond. A 1951, 208, 391. [Google Scholar] [CrossRef]
- Dheer, P.N. The surface impedance of normal and superconducting indium at 3000 Mc/s. Proc. R. Soc. Lond. A 1961, 260, 333. [Google Scholar] [CrossRef]
- Guyon, E.; Meunier, F.; Thompson, R.S. Thickness Dependence of k2 and Related Problems for Superconducting Alloy Films in Strong Fields. Phys. Rev. 1967, 156, 452. [Google Scholar] [CrossRef]
- Fossheim, K. Electromagnetic Shear-Wave Interaction in a Superconductor. Phys. Rev. Lett. 1967, 19, 81. [Google Scholar] [CrossRef]
- Xu, S.H.; Fei, G.T.; Zhang, Y.; Li, X.F.; Jin, Z.; Zhang, L.D. Size-dependent melting behavior of indium nanowires. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2011, 375, 1746–1750. [Google Scholar] [CrossRef]
- Shilyaeva, Y.; Gavrilov, S.; Matyna, L. Melting of indium, tin, and zinc nanowires embedded in the pores of anodic aluminum oxide. J. Therm. Anal. Calorim. 2014, 118, 937–942. [Google Scholar] [CrossRef]
- Kumar, P.; Kiran, M.S.R.N. Nanomechanical characterization of indium nano/microwires. Nanoscale Res. Lett. 2010, 5, 1085–1092. [Google Scholar] [CrossRef]
- Kumar, P. Trench-template fabrication of indium and silicon nanowires prepared by thermal evaporation process. J. Nanopart. Res. 2010, 12, 2473–2480. [Google Scholar] [CrossRef]
- Mondal, A. Synthesis of indium nanowires by oblique angle deposition. J. Nanophotonics 2011, 5, 053522. [Google Scholar] [CrossRef]
- Oh, S.S.; Kim, D.H.; Moon, M.W.; Vaziri, A.; Kim, M.; Yoon, E.; Oh, K.H.; Hutchinson, J.W. Indium nanowires synthesized at an ultrafast rate. Adv. Mater. 2008, 20, 1093–1098. [Google Scholar] [CrossRef]
- Redkin, A.N.; Korepanova, O.S. Spontaneous template free growth of indium nano- and microwires via disproportionation of the InBr aqueous solution. Chem. Phys. Lett. 2019, 734, 136736. [Google Scholar] [CrossRef]
- Talukdar, I.; Ozturk, B.; Flandersa, B.N.; Mishima, T.D. Directed growth of single-crystal indium wires. Appl. Phys. Lett. 2006, 88, 221907. [Google Scholar] [CrossRef]
- Gordon, E.B.; Karabulin, A.V.; Matyushenko, V.I.; Sizov, V.D.; Khodos, I.I. Structure of metallic nanowires and nanoclusters formed in superfluid helium. J. Exp. Theor. Phys. 2011, 112, 1061–1070. [Google Scholar] [CrossRef]
- Li, H.; Liang, C.; Liu, M.; Zhong, K.; Tong, Y.; Liu, P.; Hope, G.A. Synthesis of indium nanowires by galvanic displacement and their optical properties. Nanoscale Res. Lett. 2009, 4, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Kitai, A.H. Application of indium nanowires to donor-acceptor pair luminescence. J. Lumin. 2008, 128, 1856–1862. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Li, M.; Zhao, C.; Wang, X.; Yuan, Z. Ion emission properties of indium nanowires grown on anodic aluminum oxide template. Vacuum 2016, 131, 209–212. [Google Scholar] [CrossRef]
- Watson, J.H.P. Critical Magnetic Field and Transition Temperature of Synthetic High-Field Superconductors. Phys. Rev. 1966, 148, 223. [Google Scholar] [CrossRef]
- Hindley, N.K.; Watson, J.H.P. Superconducting Metals in Porous Glass as Granular Superconductors. Phys. Rev. 1969, 183, 525. [Google Scholar] [CrossRef]
- Roslyakov, I.V.; Gordeeva, E.O.; Napolskii, K.S. Role of Electrode Reaction Kinetics in Self-Ordering of Porous Anodic Alumina. Electrochim. Acta 2017, 241, 362–369. [Google Scholar] [CrossRef]
- Lillo, M.; Losic, D. Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology. J. Membr. Sci. 2009, 327, 11–17. [Google Scholar] [CrossRef]
- Noyan, A.A.; Napolskii, K.S. Birefringence in anodic aluminum oxide: An optical method for measuring porosity. Mater. Adv. 2022, 3, 3642–3648. [Google Scholar] [CrossRef]
- Tinkham, M. Introduction to Superconductivity; McGraw-Hill: New York, NY, USA, 1996; p. 20. [Google Scholar]
Sample Name | Type of the Template | Interpore Distance Dint, nm | Pore Diameter Dp, nm | Pore Density, μm−2 | Porosity p, % | Template Thickness, μm | Volume of Pores, 10−4 cm3 |
---|---|---|---|---|---|---|---|
s45 | AAO | 101 ± 6 | 45 | 113 | 18 | 40 | 8.1 |
s200 | AAO | 534 | 200 | 4.05 | 12.7 | 46 | 6.6 |
s550 | track-etched membrane | — | 550 | 0.34 | 8 | 20 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noyan, A.A.; Ovchenkov, Y.A.; Ryazanov, V.V.; Golovchanskiy, I.A.; Stolyarov, V.S.; Levin, E.E.; Napolskii, K.S. Size-Dependent Superconducting Properties of In Nanowire Arrays. Nanomaterials 2022, 12, 4095. https://doi.org/10.3390/nano12224095
Noyan AA, Ovchenkov YA, Ryazanov VV, Golovchanskiy IA, Stolyarov VS, Levin EE, Napolskii KS. Size-Dependent Superconducting Properties of In Nanowire Arrays. Nanomaterials. 2022; 12(22):4095. https://doi.org/10.3390/nano12224095
Chicago/Turabian StyleNoyan, Alexey A., Yevgeniy A. Ovchenkov, Valery V. Ryazanov, Igor A. Golovchanskiy, Vasily S. Stolyarov, Eduard E. Levin, and Kirill S. Napolskii. 2022. "Size-Dependent Superconducting Properties of In Nanowire Arrays" Nanomaterials 12, no. 22: 4095. https://doi.org/10.3390/nano12224095
APA StyleNoyan, A. A., Ovchenkov, Y. A., Ryazanov, V. V., Golovchanskiy, I. A., Stolyarov, V. S., Levin, E. E., & Napolskii, K. S. (2022). Size-Dependent Superconducting Properties of In Nanowire Arrays. Nanomaterials, 12(22), 4095. https://doi.org/10.3390/nano12224095