Study of the Cu(111) Surface by Scanning Tunneling Microscopy: The Morphology Evolution, Reconstructions, Superstructures and Line Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. In Situ STM Characterization
3. Experimental Results
3.1. Morphology Evolution
3.2. Reconstructions and Superstructures
3.3. Line Defects of Surface
4. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Yong, S.T.; Ooi, C.W.; Chai, S.P.; Wu, X.S. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. Int. J. Hydrogen Energy 2013, 38, 9541–9552. [Google Scholar] [CrossRef]
- Dong, C.; Feng, W.; Xu, W.; Yu, L.; Xiang, H.; Chen, Y.; Zhou, J. The Coppery Age: Copper (Cu)-Involved Nanotheranostics. Adv. Sci. 2020, 7, 2001549. [Google Scholar] [CrossRef] [PubMed]
- Panigrahy, A.K.; Chen, K.N. Low Temperature Cu-Cu Bonding Technology in 3D Integration: An Extensive Review. J. Electron. Packag. 2018, 140, 010801. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.F.; Shi, X.; Chen, L.C. Cu-based thermoelectric materials. Energy Storage Mater. 2016, 3, 85–97. [Google Scholar] [CrossRef]
- Kannimuthu, K.; Sangeetha, K.; Sankar, S.S.; Karmakar, A.; Madhu, R.; Kundu, S. Investigation on nanostructured Cu-based electrocatalysts for improvising water splitting: A review. Inorg. Chem. Front. 2021, 8, 234. [Google Scholar] [CrossRef]
- Eren, B.; Zherebetskyy, D.; Patera, L.L.; Wu, C.H.; Bluhm, H.; Africh, C.; Wang, L.W.; Somorjai, G.A.; Salmeron, M. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 2016, 351, 475. [Google Scholar] [CrossRef] [Green Version]
- Kürpick, U. Self-diffusion on (100), (110), and (111) surfaces of Ni and Cu: A detailed study of prefactors and activation energies. Phys. Rev. B 2001, 64, 075418. [Google Scholar] [CrossRef]
- Eren, B.; Heine, C.; Bluhm, H.; Somorjai, G.A.; Salmeron, M. Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy and Near Edge X-ray Adsorption Fine Structure Spectroscopy. J. Am. Chem. Soc. 2015, 137, 11186. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem 2011, 3, 24. [Google Scholar] [CrossRef]
- Du, Y.; Gao, F.Y.; Zhou, Y.S.; Yi, H.H.; Tang, X.L.; Qi, Z.Y. Recent advance of CuO-CeO2 catalysts for catalytic elimination of CO and NO. J. Environ. Chem. Eng. 2021, 9, 106372. [Google Scholar] [CrossRef]
- Liu, L.N.; Fan, F.; Bai, M.M.; Xue, F.; Ma, X.R.; Jiang, Z.; Fang, T. Mechanistic study of methanol synthesis from CO2 hydrogenation on Rh-doped Cu(111) surfaces. Mol. Catal. 2019, 466, 26. [Google Scholar] [CrossRef]
- Yang, Y.X.; Evans, J.; Rodriguez, J.A.; White, M.G.; Liu, P. Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(000 ). Phys. Chem. Chem. Phys. 2010, 12, 9909. [Google Scholar]
- Crommie, M.F.; Lutz, C.P.; Eigler, D.M. Imaging standing waves in a two-dimensional electron gas. Nature 1993, 363, 524. [Google Scholar] [CrossRef]
- Petersen, L.; Laitenberger, P.; Lægsgaard, E.; Besenbacher, F. Screening waves from steps and defects on Cu(111) and Au(111) imaged with STM: Contribution from bulk electrons. Phys. Rev. B 1998, 58, 7361. [Google Scholar] [CrossRef]
- Xie, K.X.; Li, Q.L.; Li, X.X.; Miao, B.F.; Sun, L.; Ding, H.F. Surface reconstruction induced Co Kondo resonance width modulation on one monolayer Ag covered Cu(111). Surf. Sci. 2019, 679, 74–78. [Google Scholar] [CrossRef]
- Cheng, J.B.; Wang, C.L.; Zou, X.Z.; Liao, L. Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures. Adv. Optical Mater. 2019, 7, 1800441. [Google Scholar] [CrossRef] [Green Version]
- Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191. [Google Scholar] [CrossRef]
- Liu, X.L.; Hersam, M.C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684. [Google Scholar] [CrossRef]
- Long, M.S.; Wang, P.; Fang, H.F.; Hu, W.D. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2018, 29, 1803807. [Google Scholar] [CrossRef]
- Dai, X.; Mitchell, I.; Kim, S.; An, H.; Ding, F. Multilayer graphene sunk growth on Cu(111) surface. Carbon 2022, 199, 233–240. [Google Scholar] [CrossRef]
- Wu, R.T.; Drozdov, I.K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, L.; Qi, J.J.; Liu, K.H. Designed Growth of Large-Size 2D Single Crystals. Adv. Mater. 2020, 32, 2000046. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.X.; Li, L.; Yu, G.; Geng, D.C.; Zhang, X.T.; Hu, W.P. Recent Advances in Growth of Large-Sized 2D Single Crystals on Cu Substrates. Adv. Mater. 2021, 33, 2003956. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Z.; Qiao, R.; Wang, Q.H.; Zhang, Z.B.; Liu, F.; Zhou, Z.Q.; Shang, N.Z.; Fang, H.W.; Wang, M.X.; et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 2022, 21, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Grewal, A.; Wang, Y.; Münks, M.; Kern, K.; Ternes, M. Local stiffness and work function variations of hexagonal boron nitride on Cu(111). Beilstein J. Nanotechnol. 2021, 12, 559–565. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhang, Z.H.; Wang, L.Q.; Yakobson, B.I.; Hersam, M.C. Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 2018, 17, 783–788. [Google Scholar] [CrossRef]
- Straumanis, M.E.; Yu, L.S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In α phase. Acta Cryst. 1969, A25, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Engbæk, J.; Schiøtz, J.; Dahl-Madsen, B.; Horch, S. Atomic structure of screw dislocations intersecting the A(111) surface: A combined scanning tunneling microscopy and molecular dynamics study. Phys. Rev. B 2006, 74, 195434. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, J.; Morgenstern, K.; Schiøtz, J.; Jacobsen, K.W.; Braun, K.F.; Rieder, K.H.; Lægsgaard, E.; Besenbacher, F. Atomic-Scale Structure of Dislocations Revealed by Scanning Tunneling Microscopy and Molecular Dynamics. Phys. Rev. Lett. 2002, 88, 206106. [Google Scholar] [CrossRef] [Green Version]
- Aladyshkin, A.Y.; Aladyshkin, A.S.; Bozhko, S.I. Observation of Hidden Parts of Dislocation Loops in Thin Pb Films by Means of Scanning Tunneling Spectroscopy. J. Phys. Chem. C 2021, 125, 26814–26822. [Google Scholar] [CrossRef]
- Zheng, H.; Gruyters, M.; Pehlke, E.; Berndt, R. “Magic” Vicinal Zinc Oxide Surfaces. Phys. Rev. Lett. 2013, 111, 086101. [Google Scholar] [CrossRef]
- Yang, P.F.; Wang, D.S.; Zhao, X.X.; Quan, W.Z.; Jiang, Q.; Li, X.; Tang, B.; Hu, J.Y.; Zhu, L.J.; Pan, S.Y.; et al. Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nat. Commun. 2022, 13, 3238. [Google Scholar] [CrossRef]
- Chan, W.L.; Chason, E. Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering. J. Appl. Phys. 2007, 101, 121301. [Google Scholar] [CrossRef]
- Nagl, C.; Schmid, M.; Yarga, P. Inverse corrugation and corrugation enhancement of Pb superstructures on Cu(lll) and (110). Surf. Sci. 1996, 369, 159–168. [Google Scholar] [CrossRef]
- Joshi, S.; Ecija, D.; Koitz, R.; Iannuzzi, M.; Seitsonen, A.P.; Hutter, J.; Sachdev, H.; Vijayaraghavan, S.; Bischoff, F.; Seufert, K.; et al. Boron Nitride on Cu(111): An Electronically Corrugated Monolayer. Nano Lett. 2012, 12, 5821–5828. [Google Scholar] [CrossRef] [Green Version]
- Nantoh, M.; Takashima, K.; Yamamoto, T.; Ishibashi, K. Sublattice site dependence of local electronic states in superstructures of CO built on a Cu(111) surface. Phys. Rev. B 2017, 96, 035424. [Google Scholar] [CrossRef]
- Hofe, T.V.; Kröger, J.; Berndt, R. Adsorption geometry of Cu(111)-Cs studied by scanning tunneling microscopy. Phys. Rev. B 2006, 73, 245434. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.F.; Lu, J.C.; Wang, X.Y.; Ruan, Z.; Zhang, H.; Gao, L.; Cai, J.M.; Lin, X. Se-concentration dependent superstructure transformations of CuSe monolayer on Cu(111) substrate. 2D Mater. 2022, 9, 015017. [Google Scholar] [CrossRef]
- Dulub, O.; Boatner, L.A.; Diebold, U. STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000-O, (100), and (110) surfaces. Surf. Sci. 2002, 519, 201–217. [Google Scholar]
- Qi, S.D.; Ren, Z.F.; Yu, M.; Zhou, H.; Yan, S.S.; Hu, S.J.; Xu, M.C. Controllable Manipulation of the Surface Superstructures and Stoichiometry of Single-Crystal CoO(001). Cryst. Growth Des. 2020, 20, 2781–2786. [Google Scholar] [CrossRef]
- Diebold, U.; Lehman, J.; Mahmoud, T.; Kuhn, M.; Leonardelli, G.; Hebenstreit, W.; Schmid, M.; Varga, P. Intrinsic defects on a TiO2 (110)(1 × 1) surface and their reaction with oxygen: A scanning tunneling microscopy study. Surf. Sci. 1998, 411, 137–153. [Google Scholar] [CrossRef]
First Cycle | Second Cycle | Third Cycle | ||||
---|---|---|---|---|---|---|
Temperature (°C) | Time (min) | Temperature (°C) | Time (min) | Temperature (°C) | Time (min) | |
Process Ⅰ | 300 | 30 | 300 | 30 | ||
Process Ⅱ | 350 | 30 | 350 | 30 | 350 | 30 |
Process Ⅲ | 450 | 3 | 450 | 3 | 450 | 3 |
Process Ⅳ | 600 | 5 | 600 | 5 | -- | -- |
Process Ⅴ | 650 | 3 | 650 | 3 | -- | -- |
Process Ⅵ | 720 | 5 | -- | -- | -- | -- |
Process Ⅶ | 420 | 5 | 420 | 5 | 420 | 5 |
Process Ⅷ | 420 | 10 | 420 | 10 | 420 | 10 |
Process Ⅸ | 700 | 5 | 700 | 5 | 720 | 5 |
Process Ⅹ | 760 | 5 | 760 | 5 | 760 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Z.; Wang, X.; Shen, X.; Zhou, H. Study of the Cu(111) Surface by Scanning Tunneling Microscopy: The Morphology Evolution, Reconstructions, Superstructures and Line Defects. Nanomaterials 2022, 12, 4278. https://doi.org/10.3390/nano12234278
Qu Z, Wang X, Shen X, Zhou H. Study of the Cu(111) Surface by Scanning Tunneling Microscopy: The Morphology Evolution, Reconstructions, Superstructures and Line Defects. Nanomaterials. 2022; 12(23):4278. https://doi.org/10.3390/nano12234278
Chicago/Turabian StyleQu, Zhaochen, Xiaodan Wang, Xiangqian Shen, and Hua Zhou. 2022. "Study of the Cu(111) Surface by Scanning Tunneling Microscopy: The Morphology Evolution, Reconstructions, Superstructures and Line Defects" Nanomaterials 12, no. 23: 4278. https://doi.org/10.3390/nano12234278
APA StyleQu, Z., Wang, X., Shen, X., & Zhou, H. (2022). Study of the Cu(111) Surface by Scanning Tunneling Microscopy: The Morphology Evolution, Reconstructions, Superstructures and Line Defects. Nanomaterials, 12(23), 4278. https://doi.org/10.3390/nano12234278