Sublayer-Enhanced Growth of Highly Ordered Mn5Ge3 Thin Film on Si(111)
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, C.; Erwin, S.C.; Feldman, L.C.; Li, A.P.; Jin, R.; Song, Y.; Thompson, J.R.; Weitering, H.H. Epitaxial ferromagnetic Mn5Ge3 on Ge(111). Appl. Phys. Lett. 2003, 83, 5002–5004. [Google Scholar] [CrossRef]
- Panguluri, R.P.; Zeng, C.; Weitering, H.H.; Sullivan, J.M.; Erwin, S.C.; Nadgorny, B. Spin polarization and electronic structure of ferromagnetic Mn5Ge3 epilayers. Phys. Stat. Sol. (B) 2005, 242, R67–R69. [Google Scholar] [CrossRef] [Green Version]
- Spiesser, A.; Saito, H.; Jansen, R.; Yuasa, S.; Ando, K. Large spin accumulation voltages in epitaxial Mn5Ge3 contacts on Ge without an oxide tunnel barrier. Phys. Rev. B. 2014, 90, 205213. [Google Scholar] [CrossRef] [Green Version]
- Fischer, I.A.; Chang, L.T.; Sürgers, C.; Rolseth, E.; Reiter, S.; Stefanov, S.; Chiussi, S.; Tang, J.; Wang, K.L.; Schulze, J. Hanle-effect measurements of spin injection from Mn5Ge3C0.8/Al2O3-contacts into degenerately doped Ge channels on Si. Appl. Phys. Lett. 2014, 105, 222408. [Google Scholar] [CrossRef] [Green Version]
- Bechler, S.; Kern, M.; Funk, H.S.; Colston, G.; Fischer, I.A.; Weißhaupt, D.; Myronov, M.; van Slageren, J.; Schulze, J. Formation of Mn5Ge3 by thermal annealing of evaporated Mn on doped Ge on Si (111). Semicond. Sci. Technol. 2018, 33, 095008. [Google Scholar] [CrossRef]
- Maraytta, N.; Voigt, J.; Salazar Mejía, C.; Friese, K.; Skourski, Y.; Perßon, J.; Salman, S.M. and Brückel, Anisotropy of the magnetocaloric effect: Example of Mn5Ge3. J. Appl. Phys. 2020, 242, 103903. [Google Scholar] [CrossRef]
- Austin, A.E. Magnetic Properties of Fe5Ge3–Mn5Ge3 Solid Solutions. J. Appl. Phys. 1969, 40, 1381–1382. [Google Scholar] [CrossRef]
- Le Thanh, V.; Spiesser, A.; Dau, M.T.; Olive-Mendez, S.F.; Michez, L.A.; Petit, M. Epitaxial growth and magnetic properties of Mn5Ge3/Ge and Mn5Ge3Cx/Ge heterostructures for spintronic applications. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 043002. [Google Scholar] [CrossRef]
- Myagkov, V.; Matsynin, A.; Bykova, L.; Zhigalov, V.; Mikhlin, Y.; Volochayev, M.; Velikanov, D.; Aleksandrovsky, A.; Bondarenko, G. Solid-state synthesis and characterization of ferromagnetic Mn5Ge3 nanoclusters in GeO/Mn thin films. J. Alloys Compd. 2019, 782, 632–640. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Yuan, Y.; Birowska, M.; Zhang, C.; Cao, L.; Wang, M.; Grenzer, J.; Kriegner, D.; Doležal, P.; Zeng, Y.J.; et al. Strain-induced switching between noncollinear and collinear spin configuration in magnetic Mn5Ge3 films. Phys. Rev. B. 2021, 104, 064416. [Google Scholar] [CrossRef]
- Yasasun, B.T.; Önel, A.C.; Aykac, I.G.; Gulgun, M.A.; Arslan, L.C. Effect of Ge layer thickness on the formation of Mn5Ge3 thin film on Ge/Si (1 1 1). J. Magn. Magn. Mater. 2018, 473, 348–354. [Google Scholar] [CrossRef]
- Alvídrez-Lechuga, A.; Antón, R.L.; Gutiérrez-Pérez, R.M.; Fuentes-Montero, M.E.; Espinosa-Magaña, F.; Holguín-Momaca, J.T.; Andrés, J.P.; Olive-Méndez, S.F. Strong magnetization and anisotropy of Mn5Ge3 thin films on Ge (001). J. Phys. Condens. Matter 2021, 33, 225802. [Google Scholar] [CrossRef]
- Olive-Mendez, S.; Spiesser, A.; Michez, L.A.; Le Thanh, V.; Glachant, A.; Derrien, J.; Devillers, T.; Barski, A.; Jamet, M. Epitaxial growth of Mn5Ge3/Ge (111) heterostructures for spin injection. Thin Solid Film. 2008, 517, 191–196. [Google Scholar] [CrossRef]
- Spiesser, A.; Slipukhina, I.; Dau, M.T.; Arras, E.; Le Thanh, V.; Michez, L.; Pochet, P.; Saito, H.; Yuasa, S.; Jamet, M.; et al. Control of magnetic properties of epitaxial Mn5Ge3Cx films induced by carbon doping. Phys. Rev. B. 2011, 84, 165203. [Google Scholar] [CrossRef]
- Spiesser, A.; Virot, F.; Michez, L.A.; Hayn, R.; Bertaina, S.; Favre, L.; Petit, M.; Le Thanh, V. Magnetic anisotropy in epitaxial Mn5Ge3 films. Phys. Rev. B. 2012, 86, 035211. [Google Scholar] [CrossRef] [Green Version]
- Petit, M.; Boussadi, A.; Heresanu, V.; Ranguis, A.; Michez, L. Step flow growth of Mn5Ge3 films on Ge (111) at room temperature. Appl. Surf. Sci. 2019, 480, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Dung, D.D.; Odkhuu, D.; Thanh Vinh, L.; Cheol Hong, S.; Cho, S. Strain-induced modification in the magnetic properties of Mn5Ge3 thin films. J. Appl. Phys. 2013, 114, 073906. [Google Scholar] [CrossRef]
- de Oliveira, R.C.; Demaille, D.; Casaretto, N.; Zheng, Y.; Marangolo, M.; Mosca, D.; Varalda, J. Magnetic and structural properties of Mn5+xGe3+y thin films as a function of substrate orientation. J. Magn. Magn. Mater. 2021, 539, 168325. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Alvídrez-Lechuga, A.; Antón, R.L.; Fuentes-Cobas, L.E.; Holguín-Momaca, J.T.; Solís-Canto, O.; Espinosa-Magaña, F.; Olive-Méndez, S.F. Epitaxial mosaic-like Mn5Ge3 thin films on Ge(001) substrates. J. Alloy. Compd. 2018, 762, 363–369. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, E.J.; Choi, K.; Han, W.B.; Kim, H.S.; Yoon, C.S. Magnetocaloric effect of Mn5+xGe3−x alloys. J. Alloy. Compd. 2015, 620, 164–167. [Google Scholar] [CrossRef]
- Liu, X.B.; Altounian, Z. Magnetocaloric effect in Mn5Ge3−xSix pseudobinary compounds. J. Appl. Phys. 2006, 99, 08Q101. [Google Scholar] [CrossRef]
- Kappel, G.; Fischer, G.; Jaegle, A. On the saturation magnetization of Mn5 Ge3. Phys. Lett. A 1973, 45, 267–268. [Google Scholar] [CrossRef]
Sample | Lattice Parameters | Rwp, % | Rp, % | |
---|---|---|---|---|
a, Å | c, Å | |||
#1 | 7.213(1) | 5.023(1) | 13.10 | 9.14 |
#2 | 7.178(1) | 5.020(1) | 13.84 | 8.40 |
#3 | 7.112(1) | 5.027(1) | 12.97 | 6.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakovlev, I.; Tarasov, I.; Lukyanenko, A.; Rautskii, M.; Solovyov, L.; Sukhachev, A.; Volochaev, M.; Efimov, D.; Goikhman, A.; Bondarev, I.; et al. Sublayer-Enhanced Growth of Highly Ordered Mn5Ge3 Thin Film on Si(111). Nanomaterials 2022, 12, 4365. https://doi.org/10.3390/nano12244365
Yakovlev I, Tarasov I, Lukyanenko A, Rautskii M, Solovyov L, Sukhachev A, Volochaev M, Efimov D, Goikhman A, Bondarev I, et al. Sublayer-Enhanced Growth of Highly Ordered Mn5Ge3 Thin Film on Si(111). Nanomaterials. 2022; 12(24):4365. https://doi.org/10.3390/nano12244365
Chicago/Turabian StyleYakovlev, Ivan, Ivan Tarasov, Anna Lukyanenko, Mikhail Rautskii, Leonid Solovyov, Alexander Sukhachev, Mikhail Volochaev, Dmitriy Efimov, Aleksandr Goikhman, Ilya Bondarev, and et al. 2022. "Sublayer-Enhanced Growth of Highly Ordered Mn5Ge3 Thin Film on Si(111)" Nanomaterials 12, no. 24: 4365. https://doi.org/10.3390/nano12244365
APA StyleYakovlev, I., Tarasov, I., Lukyanenko, A., Rautskii, M., Solovyov, L., Sukhachev, A., Volochaev, M., Efimov, D., Goikhman, A., Bondarev, I., Varnakov, S., Ovchinnikov, S., Volkov, N., & Tarasov, A. (2022). Sublayer-Enhanced Growth of Highly Ordered Mn5Ge3 Thin Film on Si(111). Nanomaterials, 12(24), 4365. https://doi.org/10.3390/nano12244365