N-Type Printed Organic Source-Gated Transistors with High Intrinsic Gain
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Transistor Characteristics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Iino, H.; Hanna, J.I. Scalable Ultrahigh-Speed Fabrication of Uniform Polycrystalline Thin Films for Organic Transistors. ACS Appl. Mater. Interfaces 2020, 12, 29497–29504. [Google Scholar] [CrossRef]
- Larsen, C.; Lundberg, P.; Tang, S.; Rafols-Ribe, J.; Sandstrom, A.; Mattias Lindh, E.; Wang, J.; Edman, L. A tool for identifying green solvents for printed electronics. Nat. Commun. 2021, 12, 4510. [Google Scholar] [CrossRef]
- Ho, D.; Lee, J.; Park, S.; Park, Y.; Cho, K.; Campana, F.; Lanari, D.; Facchetti, A.; Seo, S.; Kim, C.; et al. Green solvents for organic thin-film transistor processing. J. Mater. Chem. C 2020, 8, 5786–5794. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.A.; Ryu, S.U.; Chung, D.; Park, T.; Son, S.Y. Green-solvent-processable organic semiconductors and future directions for advanced organic electronics. J. Mater. Chem. A 2020, 8, 21455–21473. [Google Scholar] [CrossRef]
- Sugiyama, M.; Uemura, T.; Kondo, M.; Akiyama, M.; Namba, N.; Yoshimoto, S.; Noda, Y.; Araki, T.; Sekitani, T. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2019, 2, 351–360. [Google Scholar] [CrossRef]
- Su, Y.; Ma, C.; Chen, J.; Wu, H.; Luo, W.; Peng, Y.; Luo, Z.; Li, L.; Tan, Y.; Omisore, O.M.; et al. Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review. Nanoscale Res. Lett. 2020, 15, 200. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Y.M.; Wu, Z.; Li, X.; Wang, N.; Tao, K.; Wang, G.P. Carbon Nanocoil-Based Fast-Response and Flexible Humidity Sensor for Multifunctional Applications. ACS Appl. Mater. Interfaces 2019, 11, 4242–4251. [Google Scholar] [CrossRef]
- Ha, K.H.; Huh, H.; Li, Z.; Lu, N. Soft Capacitive Pressure Sensors: Trends, Challenges, and Perspectives. ACS Nano 2022, 16, 3442–3448. [Google Scholar] [CrossRef]
- He, Z.; Dai, D.S.H.S.; Chen, M.; Zou, D.; Chik, G.K.K.; Rafael, R.; Lee, K.H.; Piao, Y.; Zhang, S.; Cheng, X.; et al. Van der Waals Assembled Solution-processed Organic Monolayer Single-Crystal Transistor for Electrocardiograph Sensing. Adv. Funct. Mater. 2022, 32, 2205129. [Google Scholar] [CrossRef]
- Boudinet, D.; Benwadih, M.; Qi, Y.; Altazin, S.; Verilhac, J.-M.; Kroger, M.; Serbutoviez, C.; Gwoziecki, R.; Coppard, R.; Le Blevennec, G.; et al. Modification of gold source and drain electrodes by self-assembled monolayer in staggered n- and p-channel organic thin film transistors. Org. Electron. 2010, 11, 227–237. [Google Scholar] [CrossRef]
- Dallaire, N.J.; Brixi, S.; Claus, M.; Blawid, S.; Lessard, B.H. Benchmarking contact quality in N-type organic thin film transistors through an improved virtual-source emission-diffusion model. Appl. Phys. Rev. 2022, 9, 011418. [Google Scholar] [CrossRef]
- Bürgi, L.; Richards, T.J.; Friend, R.H.; Sirringhaus, H. Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 2003, 94, 6129–6137. [Google Scholar] [CrossRef]
- Hamadani, B.H.; Natelson, D. Nonlinear charge injection in organic field-effect transistors. J. Appl. Phys. 2005, 97, 064508. [Google Scholar] [CrossRef]
- Gundlach, D.J.; Zhou, L.; Nichols, J.A.; Jackson, T.N.; Necliudov, P.V.; Shur, M.S. An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 2006, 100, 024509. [Google Scholar] [CrossRef]
- Bolognesi, A.; Di Carlo, A.; Lugli, P. Influence of carrier mobility and contact barrier height on the electrical characteristics of organic transistors. Appl. Phys. Lett. 2002, 81, 4646–4648. [Google Scholar] [CrossRef]
- Shannon, J.M.; Gerstner, E.G. Source-gated thin-film transistors. IEEE Electron Device Lett. 2003, 24, 405–407. [Google Scholar] [CrossRef]
- Sporea, R.A.; Trainor, M.J.; Young, N.D.; Shannon, J.M.; Silva, S.R.P. Intrinsic Gain in Self-Aligned Polysilicon Source-Gated Transistors. IEEE Trans. Electron Devices 2010, 57, 2434–2439. [Google Scholar] [CrossRef]
- Jiang, C.; Choi, H.W.; Cheng, X.; Ma, H.; Hasko, D.; Nathan, A. Printed subthreshold organic transistors operating at high gain and ultralow power. Science 2019, 363, 719–723. [Google Scholar] [CrossRef]
- Mariucci, L.; Rapisarda, M.; Valletta, A.; Jacob, S.; Benwadih, M.; Fortunato, G. Current spreading effects in fully printed p-channel organic thin film transistors with Schottky source–drain contacts. Org. Electron. 2013, 14, 86–93. [Google Scholar] [CrossRef]
- Georgakopoulos, S.; Sporea, R.A.; Shkunov, M. Polymer source-gated transistors with low saturation voltage. J. Mater. Chem. C 2022, 10, 1282–1288. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Z.G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Adv. Mater. 2016, 28, 1884–1890. [Google Scholar] [CrossRef]
- Sporea, R.A.; Trainor, M.J.; Young, N.D.; Guo, X.; Shannon, J.M.; Silva, S.R.P. Performance trade-offs in polysilicon source-gated transistors. Solid-State Electron. 2011, 65-66, 246–249. [Google Scholar] [CrossRef]
- Sawada, T.; Yamamura, A.; Sasaki, M.; Takahira, K.; Okamoto, T.; Watanabe, S.; Takeya, J. Correlation between the static and dynamic responses of organic single-crystal field-effect transistors. Nat. Commun. 2020, 11, 4839. [Google Scholar] [CrossRef]
- Sporea, R.A.; Trainor, M.J.; Young, N.D.; Shannon, J.M.; Silva, S.R.P. Field Plate Optimization in Low-Power High-Gain Source-Gated Transistors. IEEE Trans. Electron Devices 2012, 59, 2180–2186. [Google Scholar] [CrossRef]
- Bestelink, E.; Zschieschang, U.; Bandara, R.M.I.; Klauk, H.; Sporea, R.A. The Secret Ingredient for Exceptional Contact-Controlled Transistors. Adv. Electron. Mater. 2021, 8, 2101101. [Google Scholar] [CrossRef]
Device I | Device II | Device III | |
---|---|---|---|
Output resistance (MΩ·cm) | 0.69 ± 0.06 | 2.1 ± 0.1 | >100 |
Transconductance (µS/cm) | 3.2 ± 0.5 | 2.2 ± 0.1 | 0.4 ± 0.1 |
Intrinsic gain (-) | 2.2 ± 0.4 | 4.67 ± 0.04 | >40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemmi, Y.; Ikeda, Y.; Sporea, R.A.; Takeda, Y.; Tokito, S.; Matsui, H. N-Type Printed Organic Source-Gated Transistors with High Intrinsic Gain. Nanomaterials 2022, 12, 4441. https://doi.org/10.3390/nano12244441
Hemmi Y, Ikeda Y, Sporea RA, Takeda Y, Tokito S, Matsui H. N-Type Printed Organic Source-Gated Transistors with High Intrinsic Gain. Nanomaterials. 2022; 12(24):4441. https://doi.org/10.3390/nano12244441
Chicago/Turabian StyleHemmi, Yudai, Yuji Ikeda, Radu A. Sporea, Yasunori Takeda, Shizuo Tokito, and Hiroyuki Matsui. 2022. "N-Type Printed Organic Source-Gated Transistors with High Intrinsic Gain" Nanomaterials 12, no. 24: 4441. https://doi.org/10.3390/nano12244441
APA StyleHemmi, Y., Ikeda, Y., Sporea, R. A., Takeda, Y., Tokito, S., & Matsui, H. (2022). N-Type Printed Organic Source-Gated Transistors with High Intrinsic Gain. Nanomaterials, 12(24), 4441. https://doi.org/10.3390/nano12244441