Design and Implementation of Graphene-Based Tunable Microwave Filter for THz Applications
Abstract
:1. Introduction
2. Basics of Graphene Tunability
3. Graphene Tunable Filter Design
4. Results and Analysis of the Design
5. Effect of Graphene Aspect Ratio on the Center Frequency
6. Conclusions and Future Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Zhang, D.; Jiang, J.; Yuan, Q.; Liu, L.; Wang, L. SIW dual-mode dual-band balanced filter with closely spaced passbands. In Proceedings of the 2020 Cross Strait Radio Science and Wireless Technology Conference, CSRSWTC, Fuzhou, China, 13–16 December 2020. [Google Scholar] [CrossRef]
- Mutepfe, C.D.K.; Srivastava, V.M. An approach to high selectivity substrate integrated waveguide band-pass filter for mm-wave applications. Int. J. Microw. Opt. Technol. 2020, 15, 592–598. [Google Scholar]
- Shen, W.; Yin, W.Y.; Sun, X.W.; Wu, L.S. Substrate-integrated waveguide bandpass filters with planar resonators for system-on-package. IEEE Trans Compon Packag. Manuf. Technol. 2013, 3, 253–261. [Google Scholar] [CrossRef]
- Zhou, K.; Wu, K. Substrate integrated waveguide multiband bandpass filters and multiplexers. In Proceedings of the 2021 IEEE MTT-S International Microwave Filter Workshop, IMFW 2021, Perugia, Italy, 17–19 November 2021; pp. 300–302. [Google Scholar] [CrossRef]
- Gallo, C.S.; Berto, E.; Braggio, C.; Calaon, F.; Carugno, G.; Crescini, N.; Ortolan, A.; Ruoso, G.; Tessaro, M. Microwave cavity tuned with liquid metal and its application to electron paramagnetic resonance. arXiv 2018, arXiv:1804.03443v1. [Google Scholar]
- Hu, X.; Choi, J.H. Flexible liquid-metal-tuned higher-order bandpass frequency selective surfaces. In Proceedings of the Asia-Pacific Microwave Conference Proceedings, APMC, Hong Kong, China, 8–11 December 2020; pp. 296–298. [Google Scholar] [CrossRef]
- Alkaraki, S.; Kelly, J.; Borja, A.L.; Mittra, R.; Wang, Y. Gallium-based liquid metal substrate integrated waveguide switches. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 257–260. [Google Scholar] [CrossRef]
- Qian, T. Reconfigurable metasurface antenna based on the liquid metal for flexible scattering fields manipulation. Micromachines 2021, 12, 243. [Google Scholar] [CrossRef]
- Prasetiadi, A.E.; Karabey, O.H.; Weickhmann, C.; Franke, T.; Hu, W.; Jost, M.; Nickel, M.; Jakoby, R. Continuously tunable substrate integrated waveguide bandpass filter in liquid crystal technology with magnetic biasing. Electron. Lett. 2015, 51, 1584–1585. [Google Scholar] [CrossRef]
- Sirci, S.; Sanchez-Soriano, M.A.; Martinez, J.D.; Boria, V.E. Electronically reconfigurable doublet in dual-mode coaxial SIW. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium, IMS, Boston, MA, USA, 2–7 June 2019; pp. 17–20. [Google Scholar] [CrossRef]
- Li, Q.; Yang, T. Compact UWB half-mode SIW bandpass filter with fully reconfigurable single and dual notched bands. IEEE Trans. Microw. Theory Tech. 2021, 69, 65–74. [Google Scholar] [CrossRef]
- Pal, B.; Mandal, M.K.; Dwari, S. Varactor tuned dual-band bandpass filter with independently tunable band positions. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 255–257. [Google Scholar] [CrossRef]
- Ali, M.F.; Bhattacharya, R.; Varshney, G. Graphene-based tunable terahertz self-diplexing/MIMO-STAR antenna with pattern diversity. Nano Commun. Netw. 2021, 30, 100378. [Google Scholar] [CrossRef]
- Kiani, N.; Hamedani, F.T.; Rezaei, P. Polarization controlling plan in graphene-based reconfigurable microstrip patch antenna. Optik 2021, 244, 167595. [Google Scholar] [CrossRef]
- Ram, G.C.; Sambaiah, P.; Yuvaraj, S.; Kartikeyan, M.V. Tunable bandstop filter using graphene in terahertz frequency band. AEU Int. J. Electron. Commun. 2022, 144, 154047. [Google Scholar] [CrossRef]
- Naghizade, S.; Saghaei, H. Tunable graphene-on-insulator band-stop filter at the mid-infrared region. Opt Quantum Electron. 2020, 52, 224. [Google Scholar] [CrossRef]
- Moazami, A.; Hashemi, M.; Shirazi, N.C. High efficiency tunable graphene-based plasmonic filter in the THz frequency range. Plasmonics 2019, 14, 359–363. [Google Scholar] [CrossRef]
- Varshney, G.; Gotra, S.; Pandey, V.S.; Yaduvanshi, R.S. Proximity-coupled graphene-patch-based tunable single-/dual-band notch filter for THz applications. J Electron. Mater. 2019, 48, 4818–4829. [Google Scholar] [CrossRef]
- Ilić, A.; Bukvić, B.; Ilić, M.M.; Budimir, D. Graphene-based waveguide resonators for submillimeter-wave applications. J. Phys. D Appl. Phys. 2016, 49, 325105. [Google Scholar] [CrossRef] [Green Version]
- Three-Dimensional Graphene Could Be Used to Make Bone Implants—Spinal News International. Available online: https://spinalnewsinternational.com/three-dimensional-graphene-could-be-used-to-make-bone-implants/ (accessed on 28 November 2022).
- Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D Appl. Phys. 2012, 45, 113001. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 2022, 12, 7821. [Google Scholar] [CrossRef]
- Cheng, Z.; Liao, J.; He, B.; Zhang, F.; Zhang, F.; Huang, X.; Zhou, L. One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustain. Chem. Eng. 2015, 3, 1677–1685. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Wu, X.; Wang, S.; Yi, Y.; Wu, P. Design of ultra-narrow band graphene refractive index sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef]
- Wang, Q.; Ouyang, Z.; Lin, M.; Zheng, Y. High-quality graphene-based tunable absorber based on double-side coupled-cavity effect. Nanomaterials 2021, 11, 2824. [Google Scholar] [CrossRef]
- Esfandiyari, M.; Lalbakhsh, A.; Jarchi, S.; Ghaffari-Miab, M.; Mahtaj, H.N.; Simorangkir, R.B.V.B. Tunable terahertz filter/antenna-sensor using graphene-based metamaterials. Mater. Des. 2022, 220, 110855. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z.G.; Lu, W.B.; Zhang, A.Q. A SIW horn antenna with dynamically tunable graphene-based attenuator. In Proceedings of the 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, CSQRWC 2018, Xuzhou, China, 21–24 July 2018. [Google Scholar] [CrossRef]
- Vorobev, A.S.; Bianco, G.V.; Bruno, G.; D’orazio, A.; O’faolain, L.; Grande, M. Tuning of graphene-based optical devices operating in the near-infrared. Appl. Sci. 2021, 11, 8367. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Lu, W.B.; Liu, Z.G.; Yi, Y.; Chen, H.; Huang, B.H. A tunable attenuator on graphene-based substrate integrated waveguide. In Proceedings of the 2017 IEEE 6th Asia-Pacific Conference on Antennas and Propagation, APCAP, Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Varshney, G.; Verma, A.; Pandey, V.S.; Yaduvanshi, R.S.; Bala, R. A proximity coupled wideband graphene antenna with the generation of higher order TM modes for THz applications. Opt. Mater. 2018, 85, 456–463. [Google Scholar] [CrossRef]
- Ram, G.C.; Sambaiah, P.; Yuvaraj, S.; Kartikeyan, M.V. Graphene based tunable bandpass filter for terahertz spectroscopy of polymers. Optik 2022, 268, 169792. [Google Scholar] [CrossRef]
- Mutepfe, C.D.K.; Srivastava, V.M. Design and analysis of compact 5th mode balanced substrate integrated waveguide band-pass filter for 39 GHz. Int. J. Commun. Antenna Propag. 2021, 11, 401–407. [Google Scholar] [CrossRef]
- Kong, M.; Wu, Y.; Zhuang, Z.; Wang, W.; Liu, Y. Graphene-based THz tunable bandstop filter with constant absolute bandwidth. Prog. Electromagn. Res. Lett. 2017, 71, 141–147. [Google Scholar] [CrossRef]
- Abunahla, H.; Gadhafi, R.; Mohammad, B.; Alazzam, A.; Kebe, M.; Sanduleanu, M. Integrated graphene oxide resistive element in tunable RF filters. Sci. Rep. 2020, 10, 13128. [Google Scholar] [CrossRef]
Parameter | Dimension (µm) |
---|---|
h1 | 4 |
h2 | 4 |
x1 | 0.0034 |
y1 | 0.17 |
W | 210 |
a1 | 50 |
d1 | 60 |
gap | 10 |
Parameter | Value |
---|---|
Temperature | 293 K |
Relaxation time | 0.1 ps |
Thickness | 0.34 nm |
Ref | Design Type | Technology | Center Frequency (THz) | Tunable Range (THz) | Material Used for Tuning |
---|---|---|---|---|---|
[15] | Band-stop filter | Planar microstrip | 1 | 0.89–0.99 | Graphene |
[31] | Band-pass filter | Interdigital | 1/1.5 | 1–1.03/1.5–1.57 | Graphene |
[33] | Band-stop filter | Planar microstrip | 1.6 | 1.605–1.716 | Graphene |
[34] | Band-stop filter | Microstrip | 0.2 | 0.2–0.245 | Graphene |
[14] | Antenna | Planar | 0.65 | 0.65–0.7 | Graphene |
This work | Band-pass filter | SIW | 1.2 | Graphene |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutepfe, C.D.K.; Srivastava, V.M. Design and Implementation of Graphene-Based Tunable Microwave Filter for THz Applications. Nanomaterials 2022, 12, 4443. https://doi.org/10.3390/nano12244443
Mutepfe CDK, Srivastava VM. Design and Implementation of Graphene-Based Tunable Microwave Filter for THz Applications. Nanomaterials. 2022; 12(24):4443. https://doi.org/10.3390/nano12244443
Chicago/Turabian StyleMutepfe, Cleophas D. K., and Viranjay M. Srivastava. 2022. "Design and Implementation of Graphene-Based Tunable Microwave Filter for THz Applications" Nanomaterials 12, no. 24: 4443. https://doi.org/10.3390/nano12244443
APA StyleMutepfe, C. D. K., & Srivastava, V. M. (2022). Design and Implementation of Graphene-Based Tunable Microwave Filter for THz Applications. Nanomaterials, 12(24), 4443. https://doi.org/10.3390/nano12244443