Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review
Abstract
:1. Introduction
2. Synthesis of Methods of ZnO NPs
2.1. Physical Methods
2.2. Chemical Methods
2.3. Biological Methods
- Low cost;
- Environmentally friendly;
- Easily scalability;
- Low energy consumption;
- Easy availability of resources;
- Simple and rapid.
3. Lamiaceae-Mediated Synthesis of ZnO NPs
3.1. Preparation of Plant Extracts
3.2. Synthesis of Lamiaceae-Mediated ZnO NPs
3.3. Factors Affecting Synthesis of Lamiaceae-Mediated ZnO NPs
Type of Plant | Zn Precursor | Morphology | Particle Size | Ref |
---|---|---|---|---|
Perilla frutescens | Zinc nitrate | Triangular | - | [78] |
Mentha arvensis | Zinc acetate dihydrate | - | 30–100 nm | [81] |
Scutellaria baicalensis | Zinc acetate dihydrate | Spherical | 25–30 nm | [82] |
Plectranthus amboinicus | Zinc nitrate hexahydrate | Rods | 88 nm average size | [83] |
Ocimum basilicum | Zinc acetate dihydrate | Non spherical | 40 nm average size | [84] |
Mentha spicata | Zinc acetate dihydrate | Nanorods | 80–100 nm average size | [85] |
Anisomeles malabarica | Zinc nitrate Zinc acetate | Round gathers into flowers Spherical gathers into bullets | 1.5–8.5 nm average size | [87] |
Ocimum tenuiflorum | Zinc acetate dihydrate | Rods | 38–163 nm | [89] |
Isodon rugosus | Zinc acetate dihydrate | Triangular | - | [90] |
Ocimum gratissimum | Zinc acetate dihydrate | Spherical | 38–68 nm | [91] |
Ocimum tenuiflorum | Zinc nitrate hexahydrate | Nanorods | 30 nm average diameter | [92] |
Tetradenia riperia | Zinc nitrate hexahydrate | Spherical | 64 nm average size | [94] |
Ocimum gratissimum | Zinc chloride | Nanorods | 54–87 nm diameter | [95] |
Mentha spicata | Zinc nitrate hexahydrate | Scales and crystals | 20–70 nm | [97] |
Anisochilus carnosus | Zinc nitrate hexahydrate | Quasi-spherical | 20–40 nm in diameter | [98] |
Ocimum gratissimum | Zinc nitrate hexahydrate | Spherical | 14–17 nm | [101] |
Satureja sahendica | Zinc chloride | Multidimensional round | 48–61 nm | [102] |
Ocimum americanum | Zinc nitrate hexahydrate | Spherical | 21 nm average size | [104] |
Ocimum basilicum | Zinc nitrate hexahydrate | Hexagonal | <50 nm | [105] |
Betonica officinalis | Zinc nitrate | - | 10 nm | [106] |
Hyptis suaveolens | Zinc nitrate | Hexagonal | 10–200 nm | [107] |
Lavandula angustifolia | Zinc acetate dihydrate | Aggregates with truncated and triangular | 61.52 nm average size | [108] |
Leucas aspera | Zinc acetate dihydrate | Spherical with a few rods | 35.10 nm average crystallite size | [109] |
Mentha arvensis | Zinc nitrate hexahydrate | Irregular | 20–15 nm crystallite size | [110] |
Mentha pulegium | Zinc nitrate hexahydrate | Quasi-spherical | 40 nm average size | [111] |
Mentha pulegium | Zinc nitrate hexahydrate | Spherical | 65.02 nm average diameter | [112] |
Ocimum americanum | Zinc acetate dihydrate | Spherical | 50 nm | [113] |
Ocimum basilicum | Zinc nitrate hexahydrate | Almost spherical | 27 nm average size | [114] |
Rosmarinus officinalis | Zinc nitrate hexahydrate | Aggregates of elongated shapes | - | [114] |
Ocimum basilicum | Zinc acetate dihydrate | Irregular | 10–25 nm | [115] |
Ocimum basilicum | Zinc acetate dihydrate | Spherical | 31 nm average size | [116] |
Ocimum basilicum | Zinc acetate dihydrate | - | 30–40 nm | [117] |
Ocimum tenuiflorum | Zinc acetate dihydrate | Hexagonal | 42 nm crystallite size | [118] |
Ocimum tenuiflorum | Zinc nitrate hexahydrate | Hexagonal | 11–25 nm diameter range | [119] |
Ocimum tenuiflorum | Zinc hexahydrate | Spherical | 10–20 nm diameter | [120] |
Ocimum tenuiflorum | Zinc acetate dihydrate | Spherical | 58.5 nm average diameter | [121] |
Ocimum tenuiflorum | Zinc nitrate hexahydrate | Flakes | 30–40 nm average size | [122] |
Origanum majorana | Zinc sulphate heptahydrate | Rods | 90–125 nm width | [123] |
Origanum vulgare | Zinc nitrate hexahydrate | Spherical | 20–30 nm | [124] |
Phlomis | Zinc nitrate hexahydrate | Hexagonal | 79 nm average size | [125] |
Plectranthus babatus | Zinc acetate dihydrate | Spherical | 30–60 nm | [126] |
Salvia officinalis | Zinc acetate dihydrate | - | 26.14 nm average size | [127] |
Scutellaria baicalensis | Zinc nitrate hexahydrate | Spherical | 50 nm | [128] |
Scutellaria baicalensis | Zinc acetate dihydrate | Spherical | 33.14–99.03 nm | [129] |
Solenostemon monostachyus | Zinc nitrate | Spherical | 23.06 nm average crystallite size | [130] |
Tectona grandis | Zinc nitrate hexahydrate | Almost spherical | 54 nm | [131] |
Tectona grandis | Zinc nitrate hexahydrate | Spherical and agglomerated | 124.6 nm | [132] |
Thymus spicata | Zinc acetate dihydrate | Irregular and almost spherical | 6.5–7.5 nm | [133] |
Thymus vulgaris | Zinc nitrite | Spherical | 46.74 nm crystallite size | [134] |
Thymus vulgaris | Zinc acetate dihydrate | Popcorn-like | 50 nm average size | [135] |
Vitex negundo | Zinc nitrate hexahydrate | Spherical | 75–80 nm | [136] |
Vitex trifolia | Zinc nitrate hexahydrate | Spherical | 28 nm average size | [137] |
3.4. Mechanism of Formation of Lamiaceae-Mediated ZnO NPs
4. Characterisation Techniques Used for Lamiaceae-Mediated ZnO NPs
4.1. XRD
4.2. UV-Vis
4.3. FTIR
4.4. SEM
4.5. EDX
4.6. TEM
4.7. DLS
4.8. Zeta Potential
5. Antibacterial Activity of ZnO NPs
5.1. Mechanism of Antibacterial Activity of ZnO NPs
5.2. Antibacterial Activity of Lamiaceae-Mediated ZnO NPs
6. Photodegradation Activity of Lamiaceae-Mediated ZnO NPs
6.1. Organic Dyes
6.2. Principle of Photodegradation Using ZnO NPs
6.3. Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO NPs
7. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Renaud, G.; Lazzari, R.; Leroy, F. Probing Surface and Interface Morphology with Grazing Incidence Small Angle X-Ray Scattering. Surf. Sci. Rep. 2009, 64, 255–380. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. An Introduction to Nanotechnology. In Interface Science and Technology; Nasrollahzadeh, M., Sajadi, S.M., Sajjadi, M., Issaabadi, Z., Monireh, A., Eds.; Elsevier: New York, NY, USA, 2019; Volume 28, pp. 1–27. [Google Scholar]
- Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T.J.; Marei, H.E.S. Nanoparticles in Tissue Engineering: Applications, Challenges and Prospects. Int. J. Nanomed. 2018, 13, 5637–5655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Meng, Y.; Aihemaiti, A.; Xu, Y.; Xiang, H.; Gao, Y.; Chen, X. Preparation, Environmental Application and Prospect of Biochar-Supported Metal Nanoparticles: A Review. J. Hazard. Mater. 2020, 388, 122026. [Google Scholar] [CrossRef]
- Latif, A.; Sheng, D.; Sun, K.; Si, Y.; Azeem, M.; Abbas, A.; Bilal, M. Remediation of Heavy Metals Polluted Environment Using Fe-Based Nanoparticles: Mechanisms, Influencing Factors, and Environmental Implications. Environ. Pollut. 2020, 264, 114728. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kwon, T.; Kim, J.; Jin, H.; Kim, H.Y.; Kim, B.; Joo, S.H.; Lee, K. Hollow Nanoparticles as Emerging Electrocatalysts for Renewable Energy Conversion Reactions. Chem. Soc. Rev. 2018, 47, 8173–8202. [Google Scholar] [CrossRef] [PubMed]
- Sheikholeslami, M.; Mahian, O. Enhancement of PCM Solidification Using Inorganic Nanoparticles and an External Magnetic Field with Application in Energy Storage Systems. J. Clean. Prod. 2019, 215, 963–977. [Google Scholar] [CrossRef]
- Ma, C.; White, J.C.; Zhao, J.; Zhao, Q.; Xing, B. The Annual Review of Food Science and Technology Is Online at Food. Annu. Rev. Food Sci. Technol. 2018, 9, 129–153. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Xing, B.; Wang, Z.; Ji, R. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, S.; Zhang, W.; Yang, X. Progress of Zinc Oxide-Based Nanocomposites in the Textile Industry. IET Collab. Intell. Manuf. 2021, 3, 281–289. [Google Scholar] [CrossRef]
- Sathiyavimal, S.; Vasantharaj, S.; Bharathi, D.; Saravanan, M.; Manikandan, E.; Kumar, S.S.; Pugazhendhi, A. Biogenesis of Copper Oxide Nanoparticles (CuONPs) Using Sida acuta and Their Incorporation over Cotton Fabrics to Prevent the Pathogenicity of Gram Negative and Gram Positive Bacteria. J. Photochem. Photobiol. B 2018, 188, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Li, Y.; Liang, F.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Ma, D. A Microporous 2D Cobalt-Based MOF with Pyridyl Sites and Open Metal Sites for Selective Adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098. [Google Scholar] [CrossRef]
- Dong, X.; Li, D.; Li, Y.; Sakiyama, H.; Muddassir, M.; Pan, Y.; Srivastava, D.; Kumar, A. A 3,8-Connected Cd(Ii)-Based Metal-Organic Framework as an Appropriate Luminescent Sensor for the Antibiotic Sulfasalazine. CrystEngComm 2022, 24, 7157–7165. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Popović, D.A.; Lević, S.M.; Kostić, A.; Tešić, Ž.L.; Nedović, V.A.; Pešić, M.B. Application of Polyphenol-Loaded Nanoparticles in Food Industry. Nanomaterials 2019, 9, 1629. [Google Scholar] [CrossRef] [Green Version]
- Saravanakumar, K.; Sathiyaseelan, A.; Mariadoss, A.V.A.; Xiaowen, H.; Wang, M.H. Physical and Bioactivities of Biopolymeric Films Incorporated with Cellulose, Sodium Alginate and Copper Oxide Nanoparticles for Food Packaging Application. Int. J. Biol. Macromol. 2020, 153, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Basnet, P.; Inakhunbi Chanu, T.; Samanta, D.; Chatterjee, S. A Review on Bio-Synthesized Zinc Oxide Nanoparticles Using Plant Extracts as Reductants and Stabilizing Agents. J. Photochem. Photobiol. B 2018, 183, 201–221. [Google Scholar] [CrossRef]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A Review on Chemiresistive ZnO Gas Sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.G.; Li, Y.Q.; Song, Z.H. Gas Sensing Performances of ZnO Hierarchical Structures for Detecting Dissolved Gases in Transformer Oil: A Mini Review. Front. Chem. 2018, 6, 508. [Google Scholar] [CrossRef]
- Djuriić, A.B.; Ng, A.M.C.; Chen, X.Y. ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications. Prog. Quantum Electron. 2010, 34, 191–259. [Google Scholar] [CrossRef]
- Kumari, P.; Misra, K.P.; Chattopadhyay, S.; Samanta, S. A Brief Review on Transition Metal Ion Doped Zno Nanoparticles and Its Optoelectronic Applications. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: New York, NY, USA, 2021; Volume 43, pp. 3297–3302. [Google Scholar]
- Sosna-Głębska, A.; Szczecińska, N.; Znajdek, K.; Sibiński, M. Review on Metallic Oxide Nanoparticles and Their Application in Optoelectronic Devices. Acta Innov. 2019, 5–15. [Google Scholar] [CrossRef]
- Ghamsari, M.S.; Alamdari, S.; Han, W.; Park, H.H. Impact of Nanostructured Thin ZnO Film in Ultraviolet Protection. Int. J. Nanomed. 2017, 12, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarahmadi, M.; Maleki-Ghaleh, H.; Mehr, M.E.; Dargahi, Z.; Rasouli, F.; Siadati, M.H. Synthesis and Characterization of Sr-Doped ZnO Nanoparticles for Photocatalytic Applications. J. Alloys Compd. 2021, 853, 157000. [Google Scholar] [CrossRef]
- Happy, A.; Soumya, M.; Venkat Kumar, S.; Rajeshkumar, S.; Sheba Rani, N.D.; Lakshmi, T.; Deepak Nallaswamy, V. Phyto-Assisted Synthesis of Zinc Oxide Nanoparticles Using Cassia alata and Its Antibacterial Activity against Escherichia coli. Biochem. Biophys. Rep. 2019, 17, 208–211. [Google Scholar] [CrossRef]
- Lučić, A.; Stambolić, A.; Omanović-Mikličanin, E.; Hamidović, S. Biosynthesis of ZnO Nanoparticles from Basil Extract and Their Antimicrobial Activity. In 10th Central European Congress on Food; Brka, M., Sarić, Z., Omanović-Mikličanin, E., Taljić, I., Biber, L., Mujčinović, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 52–58. [Google Scholar]
- Kamran, U.; Bhatti, H.N.; Iqbal, M.; Nazir, A. Green Synthesis of Metal Nanoparticles and Their Applications in Different Fields: A Review. Z. Fur Phys. Chem. 2019, 233, 1325–1349. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Shobiya, M. Laurus Nobilis Leaf Extract Mediated Green Synthesis of ZnO Nanoparticles: Characterization and Biomedical Applications. Biomed. Pharmacother. 2016, 84, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, G.; Thirumarimurugan, M.; Muthukumaran, C. Green Synthesis of ZnO Nanoparticles Using Tecoma castanifolia Leaf Extract: Characterization and Evaluation of Its Antioxidant, Bactericidal and Anticancer Activities. Microchem. J. 2019, 145, 578–587. [Google Scholar] [CrossRef]
- Suresh, D.; Nethravathi, P.C.; Udayabhanu; Rajanaika, H.; Nagabhushana, H.; Sharma, S.C. Green Synthesis of Multifunctional Zinc Oxide (ZnO) Nanoparticles Using Cassia fistula Plant Extract and Their Photodegradative, Antioxidant and Antibacterial Activities. Mater. Sci. Semicond. Process. 2015, 31, 446–454. [Google Scholar] [CrossRef]
- Selim, Y.A.; Azb, M.A.; Ragab, I.; Abd El-Azim, M.H.M. Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra Tortuosa and Their Cytotoxic Activities. Sci. Rep. 2020, 10, 3445. [Google Scholar] [CrossRef] [Green Version]
- Elumalai, K.; Velmurugan, S. Green Synthesis, Characterization and Antimicrobial Activities of Zinc Oxide Nanoparticles from the Leaf Extract of Azadirachta indica (L.). Appl. Surf. Sci. 2015, 345, 329–336. [Google Scholar] [CrossRef]
- Diallo, A.; Ngom, B.D.; Park, E.; Maaza, M. Green Synthesis of ZnO Nanoparticles by Aspalathus Linearis: Structural & Optical Properties. J. Alloys Compd. 2015, 646, 425–430. [Google Scholar] [CrossRef]
- Matinise, N.; Fuku, X.G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M. ZnO Nanoparticles via Moringa Oleifera Green Synthesis: Physical Properties & Mechanism of Formation. Appl. Surf. Sci. 2017, 406, 339–347. [Google Scholar] [CrossRef]
- Ahmad, W.; Kalra, D. Green Synthesis, Characterization and Anti Microbial Activities of ZnO Nanoparticles Using Euphorbia hirta Leaf Extract. J. King Saud. Univ. Sci. 2020, 32, 2358–2364. [Google Scholar] [CrossRef]
- Mahendiran, D.; Subash, G.; Arumai Selvan, D.; Rehana, D.; Senthil Kumar, R.; Kalilur Rahiman, A. Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-Proliferative Studies. Bionanoscience 2017, 7, 530–545. [Google Scholar] [CrossRef]
- Zielińska, S.; Matkowski, A. Phytochemistry and Bioactivity of Aromatic and Medicinal Plants from the Genus Agastache (Lamiaceae). Phytochem. Rev. 2014, 13, 391–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamadalieva, N.; Akramov, D.; Ovidi, E.; Tiezzi, A.; Nahar, L.; Azimova, S.; Sarker, S. Aromatic Medicinal Plants of the Lamiaceae Family from Uzbekistan: Ethnopharmacology, Essential Oils Composition, and Biological Activities. Medicines 2017, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raja, R.R. Medicinally Potential Plants of Labiatae (Lamiaceae) Family: An Overview. Res. J. Med. Plant 2012, 6, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Nieto, G. Biological Activities of Three Essential Oils of the Lamiaceae Family. Medicines 2017, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Golmohammadi, M.; Honarmand, M.; Ghanbari, S. A Green Approach to Synthesis of ZnO Nanoparticles Using Jujube Fruit Extract and Their Application in Photocatalytic Degradation of Organic Dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117961. [Google Scholar] [CrossRef]
- Singh, N.B.; Susan, A.B.H. Polymer Nanocomposites for Water Treatments. In Polymer-Based Nanocomposites for Energy and Environmental Applications: A Volume in Woodhead Publishing Series in Composites Science and Engineering; University of Ottawa Press: Ottawa, ON, Canada, 2018; pp. 569–595. ISBN 9780081019115. [Google Scholar]
- Ahmad, M.; Rehman, W.; Khan, M.M.; Qureshi, M.T.; Gul, A.; Haq, S.; Ullah, R.; Rab, A.; Menaa, F. Phytogenic Fabrication of ZnO and Gold Decorated ZnO Nanoparticles for Photocatalytic Degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 104725. [Google Scholar] [CrossRef]
- Modwi, A.; Khezami, L.; Taha, K.K.; Bessadok, A.J.; Mokraoui, S. Photo-Degradation of a Mixture of Dyes Using Barium Doped ZnO Nanoparticles. J. Mater. Sci. Mater. Electron. 2019, 30, 14714–14725. [Google Scholar] [CrossRef]
- Kansal, S.K.; Lamba, R.; Mehta, S.K.; Umar, A. Photocatalytic Degradation of Alizarin Red S Using Simply Synthesized ZnO Nanoparticles. Mater. Lett. 2013, 106, 385–389. [Google Scholar] [CrossRef]
- Ameen, F.; Dawoud, T.; AlNadhari, S. Ecofriendly and Low-Cost Synthesis of ZnO Nanoparticles from Acremonium Potronii for the Photocatalytic Degradation of Azo Dyes. Environ. Res. 2021, 202, 111700. [Google Scholar] [CrossRef]
- Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S.K. Review—Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles. ECS J. Solid State Sci. Technol. 2021, 10, 023002. [Google Scholar] [CrossRef]
- Lallo da Silva, B.; Caetano, B.L.; Chiari-Andréo, B.G.; Pietro, R.C.L.R.; Chiavacci, L.A. Increased Antibacterial Activity of ZnO Nanoparticles: Influence of Size and Surface Modification. Colloids Surf. B Biointerfaces 2019, 177, 440–447. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.C.; Haberbeck, L.U.; Riella, H.G.; Ribeiro, D.H.B.; Carciofi, B.A.M. Antibacterial Activity of Zinc Oxide Nanoparticles Synthesized by Solochemical Process. Braz. J. Chem. Eng. 2019, 36, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Janaki, A.C.; Sailatha, E.; Gunasekaran, S. Synthesis, Characteristics and Antimicrobial Activity of ZnO Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 144, 17–22. [Google Scholar] [CrossRef]
- Saka, A.; Tesfaye, J.L.; Gudata, L.; Shanmugam, R.; Dwarampudi, L.P.; Nagaprasad, N.; Krishnaraj, R.; Rajeshkumar, S. Synthesis, Characterization, and Antibacterial Activity of ZnO Nanoparticles from Fresh Leaf Extracts of Apocynaceae, Carissa spinarum L. (Hagamsa). J. Nanomater. 2022, 2022, 6230298. [Google Scholar] [CrossRef]
- Sundrarajan, M.; Ambika, S.; Bharathi, K. Plant-Extract Mediated Synthesis of ZnO Nanoparticles Using Pongamia Pinnata and Their Activity against Pathogenic Bacteria. Adv. Powder Technol. 2015, 26, 1294–1299. [Google Scholar] [CrossRef]
- Meer, B.; Andleeb, A.; Iqbal, J.; Ashraf, H.; Meer, K.; Ali, J.S.; Drouet, S.; Anjum, S.; Mehmood, A.; Khan, T.; et al. Bio-Assisted Synthesis and Characterization of Zinc Oxide Nanoparticles from Lepidium Sativum and Their Potent Antioxidant, Antibacterial and Anticancer Activities. Biomolecules 2022, 12, 855. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Ashokkumar, T. Plant-Mediated Biosynthesis of Metallic Nanoparticles: A Review of Literature, Factors Affecting Synthesis, Characterization Techniques and Applications. J. Environ. Chem. Eng. 2017, 5, 4866–4883. [Google Scholar] [CrossRef]
- Droepenu, E.K.; Wee, B.S.; Chin, S.F.; Kok, K.Y.; Maligan, M.F. Zinc Oxide Nanoparticles Synthesis Methods and Its Effect on Morphology: A Review. Biointerface Res. Appl. Chem. 2022, 12, 4261–4292. [Google Scholar] [CrossRef]
- Saleh, T.A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov. 2020, 20, 101067. [Google Scholar] [CrossRef]
- El-Gendy, A.O.; Nawaf, K.T.; Ahmed, E.; Samir, A.; Hamblin, M.R.; Hassan, M.; Mohamed, T. Preparation of Zinc Oxide Nanoparticles Using Laser-Ablation Technique: Retinal Epithelial Cell (ARPE-19) Biocompatibility and Antimicrobial Activity When Activated with Femtosecond Laser. J. Photochem. Photobiol. B 2022, 234, 112540. [Google Scholar] [CrossRef] [PubMed]
- Wirunchit, S.; Gansa, P.; Koetniyom, W. Synthesis of ZnO Nanoparticles by Ball-Milling Process for Biological Applications. Mater. Today Proc. 2021, 47, 3554–3559. [Google Scholar] [CrossRef]
- al Abdullah, K.; Awad, S.; Zaraket, J.; Salame, C. Synthesis of ZnO Nanopowders by Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature. Energy Procedia 2017, 119, 565–570. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Kasi Viswanath, I.V.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L.N. Review on Nanomaterials: Synthesis and Applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Noman, M.T.; Petru, M.; Militkỳ, J.; Azeem, M.; Ashraf, M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials 2020, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- de Matteis, V.; Cascione, M.; Toma, C.C.; Leporatti, S. Silver Nanoparticles: Synthetic Routes, in Vitro Toxicity and Theranostic Applications for Cancer Disease. Nanomaterials 2018, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Mornani, E.G.; Mosayebian, P.; Dorranian, D.; Behzad, K. Effect of Calcination Temperature on the Size and Optical Properties of Synthesized ZnO Nanoparticles. J. Ovonic Res. 2016, 12, 75–80. [Google Scholar]
- Sabir, S.; Arshad, M.; Chaudhari, S.K. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications. Sci. World J. 2014, 2014, 925494. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, M.; Gopinath, V.; Chaurasia, M.K.; Syed, A.; Ameen, F.; Purushothaman, N. Green Synthesis of Anisotropic Zinc Oxide Nanoparticles with Antibacterial and Cytofriendly Properties. Microb. Pathog. 2018, 115, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Selvarajan, E.; Mohanasrinivasan, V. Biosynthesis and Characterization of ZnO Nanoparticles Using Lactobacillus Plantarum VITES07. Mater. Lett. 2013, 112, 180–182. [Google Scholar] [CrossRef]
- Jain, D.; Shivani; Bhojiya, A.A.; Singh, H.; Daima, H.K.; Singh, M.; Mohanty, S.R.; Stephen, B.J.; Singh, A. Microbial Fabrication of Zinc Oxide Nanoparticles and Evaluation of Their Antimicrobial and Photocatalytic Properties. Front. Chem. 2020, 8, 778. [Google Scholar] [CrossRef] [PubMed]
- Mohd Yusof, H.; Mohamad, R.; Zaidan, U.H.; Abdul Rahman, N.A. Microbial Synthesis of Zinc Oxide Nanoparticles and Their Potential Application as an Antimicrobial Agent and a Feed Supplement in Animal Industry: A Review. J. Anim. Sci. Biotechnol. 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, V.; Hariram, M.; Vivekanandhan, S.; Muthuramkumar, S. Periconium Sp. (Endophytic Fungi) Extract Mediated Sol-Gel Synthesis of ZnO Nanoparticles for Antimicrobial and Antioxidant Applications. Mater. Sci. Semicond. Process. 2020, 105, 104739. [Google Scholar] [CrossRef]
- Barani, M.; Masoudi, M.; Mashreghi, M.; Makhdoumi, A.; Eshghi, H. Cell-Free Extract Assisted Synthesis of ZnO Nanoparticles Using Aquatic Bacterial Strains: Biological Activities and Toxicological Evaluation. Int. J. Pharm. 2021, 606, 120878. [Google Scholar] [CrossRef]
- Alhujaily, M.; Albukhaty, S.; Yusuf, M.; Mohammed, M.K.A.; Sulaiman, G.M.; Al-Karagoly, H.; Alyamani, A.A.; Albaqami, J.; AlMalki, F.A. Recent Advances in Plant-Mediated Zinc Oxide Nanoparticles with Their Significant Biomedical Properties. Bioengineering 2022, 9, 541. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Metagenomics Methods for the Study of Plant-Associated Microbial Communities: A Review. J. Microbiol. Methods 2020, 170, 105860. [Google Scholar] [CrossRef]
- Vishnukumar, P.; Vivekanandhan, S.; Muthuramkumar, S. Plant-Mediated Biogenic Synthesis of Palladium Nanoparticles: Recent Trends and Emerging Opportunities. ChemBioEng Rev. 2017, 4, 18–36. [Google Scholar] [CrossRef]
- Weldegebrieal, G.K. Synthesis Method, Antibacterial and Photocatalytic Activity of ZnO Nanoparticles for Azo Dyes in Wastewater Treatment: A Review. Inorg. Chem. Commun. 2020, 120, 108140. [Google Scholar] [CrossRef]
- El-Gammal, R.E. Antioxidative Activity of Nanoparticles of Rosemary. Int. J. Chemtech. Res. 2016, 9, 844–854. [Google Scholar]
- Truong, D.H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and in Vitro Anti-Inflammatory Activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef]
- Chowdhury, R.A.; Hassan, M.M.; Das, S.; Aninda Dhar, S.; Moniruzzaman, M. An Environment Friendly Synthesis and Characterization of Zinc Oxide Nanoparticles Using Mentha viridis Leaf Extract. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1126, 012014. [Google Scholar] [CrossRef]
- Hou, T.; Sankar Sana, S.; Li, H.; Wang, X.; Wang, Q.; Boya, V.K.N.; Vadde, R.; Kumar, R.; Kumbhakar, D.V.; Zhang, Z.; et al. Development of Plant Protein Derived Tri Angular Shaped Nano Zinc Oxide Particles with Inherent Antibacterial and Neurotoxicity Properties. Pharmaceutics 2022, 14, 2155. [Google Scholar] [CrossRef] [PubMed]
- Morsli, F.; Grigorakis, S.; Halahlah, A.; Poulianiti, K.P.; Makris, D.P. Appraisal of the Combined Effect of Time and Temperature on the Total Polyphenol Yield in Batch Stirred-Tank Extraction of Medicinal and Aromatic Plants: The Extraction Efficiency Factor. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100340. [Google Scholar] [CrossRef]
- Mohammadi-Aloucheh, R.; Habibi-Yangjeh, A.; Bayrami, A.; Latifi-Navid, S.; Asadi, A. Green Synthesis of ZnO and ZnO/CuO Nanocomposites in Mentha longifolia Leaf Extract: Characterization and Their Application as Anti-Bacterial Agents. J. Mater. Sci. Mater. Electron. 2018, 29, 13596–13605. [Google Scholar] [CrossRef]
- Stoyanova, D.; Stambolova, I.; Blaskov, V.; Georgieva, P.; Shipochka, M.; Zaharieva, K.; Dimitrov, O.; Markov, P.; Dyakova, V.; Kostova, Y.; et al. Modified Approach Using Mentha arvensis in the Synthesis of ZnO Nanoparticles—Textural, Structural, and Photocatalytic Properties. Appl. Sci. (Switz.) 2022, 12, 1096. [Google Scholar] [CrossRef]
- Tang, Y.; Rajendran, P.; Veeraraghavan, V.P.; Hussain, S.; Balakrishna, J.P.; Chinnathambi, A.; Alharbi, S.A.; Alahmadi, T.A.; Rengarajan, T.; Mohan, S.K. Osteogenic Differentiation and Mineralization Potential of Zinc Oxide Nanoparticles from Scutellaria Baicalensis on Human Osteoblast-like MG-63 Cells. Mater. Sci. Eng. C 2021, 119, 111656. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, Y.; Shi, H.; Fu, L. Green Biosynthesis of ZnO Nanoparticles by Plectranthus Amboinicus Leaf Extract and Their Application for Electrochemical Determination of Norfloxacin. Inorg. Nano-Met. Chem. 2019, 49, 277–282. [Google Scholar] [CrossRef]
- Upadhyay, P.K.; Jain, V.K.; Sharma, S.; Shrivastav, A.K.; Sharma, R. Green and Chemically Synthesized ZnO Nanoparticles: A Comparative Study. IOP Conf. Ser. Mater. Sci. Eng. 2020, 798, 012025. [Google Scholar] [CrossRef]
- Karaköse, E.; Çolak, H. Structural, Electrical, and Antimicrobial Characterization of Green Synthesized ZnO Nanorods from Aqueous Mentha Extract. MRS Commun. 2018, 8, 577–585. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Jacob, J.O.; Tijani, J.O.; Suleiman, M.A.T. A Critical Review of Synthesis Parameters Affecting the Properties of Zinc Oxide Nanoparticle and Its Application in Wastewater Treatment. Appl. Water Sci. 2021, 11, 48. [Google Scholar] [CrossRef]
- Sekar, A.; Murugan, P.J.; Paularokiadoss, F. Biological Synthesis and Characterization of Zinc Oxide Nanoparticles (ZnONPs) from Anisomeles malabarica. Vietnam J. Chem. 2022, 60, 459–471. [Google Scholar] [CrossRef]
- Xu, J.; Huang, Y.; Zhu, S.; Abbes, N.; Jing, X.; Zhang, L. A Review of the Green Synthesis of ZnO Nanoparticles Using Plant Extracts and Their Prospects for Application in Antibacterial Textiles. J. Eng. Fiber Fabr. 2021, 16, 15589250211046242. [Google Scholar] [CrossRef]
- Sushma, N.J.; Mahitha, B.; Mallikarjuna, K.; Raju, B.D.P. Bio-Inspired ZnO Nanoparticles from Ocimum tenuiflorum and Their in Vitro Antioxidant Activity. Appl. Phys. A Mater. Sci. Process. 2016, 122, 544. [Google Scholar] [CrossRef]
- Siddiquah, A.; Hashmi, S.S.; Mushtaq, S.; Renouard, S.; Blondeau, J.P.; Abbasi, R.; Hano, C.; Abbasi, B.H. Exploiting in Vitro Potential and Characterization of Surface Modified Zinc Oxide Nanoparticles of Isodon rugosus Extract: Their Clinical Potential towards Hepg2 Cell Line and Human Pathogenic Bacteria. EXCLI J. 2018, 17, 671–687. [Google Scholar] [CrossRef]
- Mfon, R.E.; Odiaka, N.I.; Sarua, A. Interactive Effect of Colloidal Solution of Zinc Oxide Nanoparticles Biosynthesized Using Ocimum gratissimum and Vernonia amygdalina Leaf Extracts on the Growth of Amaranthus cruentus Seeds. Afr. J. Biotechnol. 2017, 16, 1481–1489. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, K.; Thakur, N.; Chauhan, M.S. Ocimum tenuiflorum Leaf Extract as a Green Mediator for the Synthesis of ZnO Nanocapsules Inactivating Bacterial Pathogens. Chem. Pap. 2020, 74, 3431–3444. [Google Scholar] [CrossRef]
- Algarni, T.S.; Abduh, N.A.Y.; al Kahtani, A.; Aouissi, A. Photocatalytic Degradation of Some Dyes under Solar Light Irradiation Using ZnO Nanoparticles Synthesized from Rosmarinus officinalis Extract. Green Chem. Lett. Rev. 2022, 15, 460–473. [Google Scholar] [CrossRef]
- Mtavangu, S.G.; Machunda, R.L.; van der Bruggen, B.; Njau, K.N. In Situ Facile Green Synthesis of Ag–ZnO Nanocomposites Using Tetradenia riperia Leaf Extract and Its Antimicrobial Efficacy on Water Disinfection. Sci. Rep. 2022, 12, 15359. [Google Scholar] [CrossRef]
- Ramana, M.V.; Anuradha, G.; Janaki Rama Rao, V.V.; Anitha, P.; Lakshmi, P.S. Synthesis of Zinc Oxide Nanostructures Using Ocimum Gratissiumum Leaf Extract. In Proceedings of the UGC Sponsored Conference on ATOM-2014 (Advanced Technology Oriented Materials-2104), Rajahmundry, India, 8–9 December 2014; pp. 140–143. [Google Scholar]
- Luque, P.A.; Garrafa-Gálvez, H.E.; García-Maro, C.A.; Soto-Robles, C.A. Study of the Optical Properties of ZnO Semiconductor Nanoparticles Using Origanum vulgare and Its Effect in Rhodamine B Degradation. Optik (Stuttg) 2022, 258, 168937. [Google Scholar] [CrossRef]
- Nava, O.; Murrieta-Rico, F.N.; Martínez-Rosas, M.E.; Chinchillas-Chinchillas, M.J.; Garrafa-Galvez, H.E.; Vilchis-Nestor, A.R.; Luque, P.A. Evaluation of Electrochemical Properties of Zinc Oxide Based Semiconductor Nanoparticles Biosynthesized with Mentha spicata for Optoelectronic Applications. Mater. Lett. 2020, 275, 128101. [Google Scholar] [CrossRef]
- Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Anisochilus Carnosus Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles for Antibacterial and Photocatalytic Activities. Mater. Sci. Semicond. Process. 2015, 39, 621–628. [Google Scholar] [CrossRef]
- Karam, S.T.; Abdulrahman, A.F. Green Synthesis and Characterization of ZnO Nanoparticles by Using Thyme Plant Leaf Extract. Photonics 2022, 9, 594. [Google Scholar] [CrossRef]
- Kamarajan, G.; Anburaj, D.B.; Porkalai, V.; Muthuvel, A.; Nedunchezhian, G. Effect of Temperature on Optical, Structural, Morphological and Antibacterial Properties of Biosynthesized ZnO Nanoparticles. J. Niger. Soc. Phys. Sci. 2022, 4, 892. [Google Scholar] [CrossRef]
- Mfon, R.E.; Hall, S.R.; Sarua, A. Effect of Ocimum gratissimum Plant Leaf Extract Concentration and Annealing Temperature on the Structure and Optical Properties of Synthesized Zinc Oxide Nanoparticles. EDUCATUM J. Sci. Math. Technol. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Chegini, V.; Noghabi, K.A.; Afshari, K.P.; Ebadi, M.; Noghabi, K.A. Biological Synthesis of ZnO Nanoparticles Using Ethanolic Extract of Satureja sahendica Bornm: Its Characterization and Antimicrobial Features. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Asjadi, F.; Yaghoobi, M. Characterization and Dye Removal Capacity of Green Hydrothermal Synthesized ZnO Nanoparticles. Ceram Int. 2022, 48, 27027–27038. [Google Scholar] [CrossRef]
- Narendra Kumar, H.K.; Chandra Mohana, N.; Nuthan, B.R.; Ramesha, K.P.; Rakshith, D.; Geetha, N.; Satish, S. Phyto-Mediated Synthesis of Zinc Oxide Nanoparticles Using Aqueous Plant Extract of Ocimum americanum and Evaluation of Its Bioactivity. SN Appl. Sci. 2019, 1, 651. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, G.; Saroja, M.; Venkatachalam, M.; Evanjelene, V.K.; Manager, D.; Hi, O. Characterization and Antibacterial Activity of Green Synthesized Nanoparticles from Ocimum basilicum Leaf Extract. Adv. Biores. 2017, 8, 29–35. [Google Scholar] [CrossRef]
- Dobrucka, R.; Szymanski, M.; Przekop, R. Phytotoxic Effects of Biosynthesized ZnO Nanoparticles Using Betonica officinalis Extract. Environ. Technol. (U. K.) 2021, 42, 3747–3755. [Google Scholar] [CrossRef] [PubMed]
- Raja, V.; Selvan, G.; Anbarasu, R.; Baskar, S. Green Synthesis of Zinc Oxide Nanoparticles Using Hyptis Leaf Extract and Activated Carbon Based Zinc Oxide Composite of Supercapacitor Applications. Indian J. Sci. Technol. 2019, 12, 107–108. [Google Scholar] [CrossRef]
- Rather, G.A.; Nanda, A.; Raj, E.; Mathivanan, N.; Nayak, B.K. Green Synthesis of ZnO Nanoparticles Using the Leaf Extract of Lavandula Angustifolia and Evaluation of Their Antibacterial Activity against Human Pathogens. Int. J. Health Sci. (Qassim) 2022, 6, 13478–13485. [Google Scholar] [CrossRef]
- Kurian, A.; Elumalai, P. Study on the Impacts of Chemical and Green Synthesized (Leucas aspera and Oxy-Cyclodextrin Complex) Dietary Zinc Oxide Nanoparticles in Nile Tilapia (Oreochromis niloticus). Environ. Sci. Pollut. Res. 2021, 28, 20344–20361. [Google Scholar] [CrossRef] [PubMed]
- Manjula, R.; Prasad, B.D.; Vidya, Y.S.; Nagabhushana, H.; Anantharaju, K.S. Mentha arvensis Mediated Synthesis and Characterization of Zinc Oxide Nanoparticles for Energy Applications. Mater. Today Proc. 2020, 46, 6051–6055. [Google Scholar] [CrossRef]
- Rad, S.S.; Sani, A.M.; Mohseni, S. Biosynthesis, Characterization and Antimicrobial Activities of Zinc Oxide Nanoparticles from Leaf Extract of Mentha pulegium (L.). Microb. Pathog. 2019, 131, 239–245. [Google Scholar] [CrossRef]
- Alavi, M.; Dehestaniathar, S.; Mohammadi, S.; Maleki, A.; Karimi, N. Antibacterial Activities of Phytofabricated ZnO and CuO NPs by Mentha pulegium Leaf/Flower Mixture Extract against Antibiotic Resistant Bacteria. Adv. Pharm. Bull. 2021, 11, 497–504. [Google Scholar] [CrossRef]
- Vidhya, E.; Vijayakumar, S.; Prathipkumar, S.; Praseetha, P.K. Green Way Biosynthesis: Characterization, Antimicrobial and Anticancer Activity of ZnO Nanoparticles. Gene Rep. 2020, 20, 100688. [Google Scholar] [CrossRef]
- Stan, M.; Popa, A.; Toloman, D.; Silipas, T.D.; Vodnar, D.C. Antibacterial and Antioxidant Activities of ZnO Nanoparticles Synthesized Using Extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Abdelsattar, A.S.; Farouk, W.M.; Mohamed Gouda, S.; Safwat, A.; Hakim, T.A.; El-Shibiny, A. Utilization of Ocimum basilicum Extracts for Zinc Oxide Nanoparticles Synthesis and Their Antibacterial Activity after a Novel Combination with Phage. Mater. Lett. 2022, 309, 131344. [Google Scholar] [CrossRef]
- Malik, A.R.; Sharif, S.; Shaheen, F.; Khalid, M.; Iqbal, Y.; Faisal, A.; Aziz, M.H.; Atif, M.; Ahmad, S.; Fakhar-e-Alam, M.; et al. Green Synthesis of RGO-ZnO Mediated Ocimum basilicum Leaves Extract Nanocomposite for Antioxidant, Antibacterial, Antidiabetic and Photocatalytic Activity. J. Saudi Chem. Soc. 2022, 26, 101438. [Google Scholar] [CrossRef]
- Irshad, S.; Riaz, M.; Anjum, A.A.; Sana, S.; Saleem, R.S.Z.; Shaukat, A. Biosynthesis of Zno Nanoparticles Using Ocimum basilicum and Determination of Its Antimicrobial Activity. J. Anim. Plant Sci. 2020, 30, 185–191. [Google Scholar] [CrossRef]
- Subbiah, R.; Muthukumaran, S.; Raja, V. Biosynthesis, Structural, Photoluminescence and Photocatalytic Performance of Mn/Mg Dual Doped ZnO Nanostructures Using Ocimum tenuiflorum Leaf Extract. Optik (Stuttg) 2020, 208, 164556. [Google Scholar] [CrossRef]
- Raut, S.; Thorat, P.V.; Thakre, R. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Ocimum tenuiflorum Leaves. Int. J. Sci. Res. 2013, 4, 2319–7064. [Google Scholar]
- Nayak, A.; Sahoo, J.K.; Sahoo, S.K.; Sahu, D. Removal of Congo Red Dye from Aqueous Solution Using Zinc Oxide Nanoparticles Synthesised from Ocimum sanctum (Tulsi Leaf): A Green Approach. Int. J. Environ. Anal. Chem. 2020, 1–22. [Google Scholar] [CrossRef]
- Almutairi, B.; Albahser, G.; Almeer, R.; Alyami, N.M.; Almukhlafi, H.; Yaseen, K.N.; Alkahtani, S.; Alarifi, S.; Saxena, M. Investigation of Cytotoxicity Apoptotic and Inflammatory Responses of Biosynthesized Zinc Oxide Nanoparticles from Ocimum sanctum Linn in Human Skin Keratinocyte (Hacat) and Human Lung Epithelial (A549) Cells. Oxid. Med. Cell Longev. 2020, 2020, 1835475. [Google Scholar] [CrossRef] [PubMed]
- Panchal, P.; Paul, D.R.; Sharma, A.; Choudhary, P.; Meena, P.; Nehra, S.P. Biogenic Mediated Ag/ZnO Nanocomposites for Photocatalytic and Antibacterial Activities towards Disinfection of Water. J. Colloid Interface Sci. 2020, 563, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Saini, M.; Mushtaq, A.; Yadav, S.; Rawat, S.; Rani, N.; Gupta, K.; Saini, K. Green Synthesis of Rod Shaped ZnO Using Extract of Origanum Majorana Leaf and Investigation for Antibacterial Applications. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1225, 012048. [Google Scholar] [CrossRef]
- Kamli, M.R.; Malik, M.A.; Srivastava, V.; Sabir, J.S.M.; Mattar, E.H.; Ahmad, A. Biogenic Zno Nanoparticles Synthesized from Origanum vulgare Abrogates Quorum Sensing and Biofilm Formation in Opportunistic Pathogen Chromobacterium Violaceum. Pharmaceutics 2021, 13, 1743. [Google Scholar] [CrossRef]
- Alyamani, A.A.; Albukhaty, S.; Aloufi, S.; Almalki, F.A.; Al-Karagoly, H.; Sulaiman, G.M. Green Fabrication of Zinc Oxide Nanoparticles Using Phlomis Leaf Extract: Characterization and in Vitro Evaluation of Cytotoxicity and Antibacterial Properties. Molecules 2021, 26, 6140. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B.; Thajuddin, N. Control of Biofilm Forming Clinically Important Bacteria by Green Synthesized ZnO Nanoparticles and Its Ecotoxicity on Ceriodaphnia Cornuta. Microb. Pathog. 2017, 107, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Abomuti, M.A.; Danish, E.Y.; Firoz, A.; Hasan, N.; Malik, M.A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia Officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. Biology 2021, 10, 1075. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Batjikh, I.; Hurh, J.; Han, Y.; Huo, Y.; Ali, H.; Li, J.F.; Rupa, E.J.; Ahn, J.C.; Mathiyalagan, R.; et al. Green Synthesis of Zinc Oxide Nanoparticles from Root Extract of Scutellaria Baicalensis and Its Photocatalytic Degradation Activity Using Methylene Blue. Optik (Stuttg) 2019, 184, 324–329. [Google Scholar] [CrossRef]
- Tettey, C.O.; Shin, H.M. Evaluation of the Antioxidant and Cytotoxic Activities of Zinc Oxide Nanoparticles Synthesized Using Scutellaria Baicalensis Root. Sci. Afr. 2019, 6, e00157. [Google Scholar] [CrossRef]
- Karu, E.; Magaji, B.; Shehu, Z.; Abdulsalam, H. Biosynthesis of Zinc Oxide Nanoparticles Using Solenostemon Monostachyus Leaf Extract and Its Antimicrobial Activity. Commun. Phys. Sci. 2020, 6, 699–705. [Google Scholar]
- Senthilkumar, N.; Nandhakumar, E.; Priya, P.; Soni, D.; Vimalan, M.; Vetha Potheher, I. Synthesis of ZnO Nanoparticles Using Leaf Extract of: Tectona grandis (L.) and Their Anti-Bacterial, Anti-Arthritic, Anti-Oxidant and in Vitro Cytotoxicity Activities. New J. Chem. 2017, 41, 10347–10356. [Google Scholar] [CrossRef]
- Eswari, K.M.; Asaithambi, S.; Karuppaiah, M.; Sakthivel, P.; Balaji, V.; Ponelakkia, D.K.; Yuvakkumar, R.; Kumar, P.; Vijayaprabhu, N.; G, R. Green Synthesis of ZnO Nanoparticles Using Abutilon Indicum and Tectona Grandis Leaf Extracts for Evaluation of Anti-Diabetic, Anti-Inflammatory and in-Vitro Cytotoxicity Activities. Ceram Int. 2022, 48, 33624–33634. [Google Scholar] [CrossRef]
- Gur, T.; Meydan, I.; Seckin, H.; Bekmezci, M.; Sen, F. Green Synthesis, Characterization and Bioactivity of Biogenic Zinc Oxide Nanoparticles. Environ. Res. 2022, 204, 111897. [Google Scholar] [CrossRef]
- Zare, M.; Namratha, K.; Thakur, M.S.; Byrappa, K. Biocompatibility Assessment and Photocatalytic Activity of Bio-Hydrothermal Synthesis of ZnO Nanoparticles by Thymus vulgaris Leaf Extract. Mater. Res. Bull. 2019, 109, 49–59. [Google Scholar] [CrossRef]
- Çolak, H.; Karaköse, E. Structural, Electrical and Optical Properties of Green Synthesized ZnO Nanoparticles Using Aqueous Extract of Thyme (Thymus vulgaris). J. Mater. Sci. Mater. Electron. 2017, 28, 12184–12190. [Google Scholar] [CrossRef]
- Ambika, S.; Sundrarajan, M. Antibacterial Behaviour of Vitex Negundo Extract Assisted ZnO Nanoparticles against Pathogenic Bacteria. J. Photochem. Photobiol. B 2015, 146, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Adaikala Raj, G. Bio-Approach: Plant Mediated Synthesis of ZnO Nanoparticles and Their Catalytic Reduction of Methylene Blue and Antimicrobial Activity. Adv. Powder Technol. 2015, 26, 1639–1651. [Google Scholar] [CrossRef]
- Simeoni, M.C.; Pellegrini, M.; Sergi, M.; Pittia, P.; Ricci, A.; Compagnone, D. Analysis of Polyphenols in the Lamiaceae Family by Matrix Solid-Phase Dispersion Extraction Followed by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Determination. ACS Omega 2018, 3, 17610–17616. [Google Scholar] [CrossRef]
- Tzima, K.; Brunton, N.P.; Rai, D.K. Qualitative and Quantitative Analysis of Polyphenols in Lamiaceae Plants—A Review. Plants 2018, 7, 25. [Google Scholar] [CrossRef]
- Alamdari, S.; Mirzaee, O.; Nasiri Jahroodi, F.; Tafreshi, M.J.; Ghamsari, M.S.; Shik, S.S.; Ara, M.H.M.; Lee, K.-Y.; Park, H.-H. Green Synthesis of Multifunctional ZnO/Chitosan Nanocomposite Film Using Wild Mentha pulegium Extract for Packaging Applications. Surf. Interfaces 2022, 34, 102349. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Udriştioiu, E.; Aboul-Enein, H.Y. X-ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Bharath, L.V. Mechanism of Plant-Mediated Synthesis of Silver Nanoparticles—A Review on Biomolecules Involved, Characterisation and Antibacterial Activity. Chem. Biol. Interact 2017, 273, 219–227. [Google Scholar] [CrossRef]
- Rani, N.; Rawat, K.; Saini, M.; Shrivastava, A.; Kandasamy, G.; Saini, K.; Maity, D. Rod-Shaped ZnO Nanoparticles: Synthesis, Comparison and in Vitro Evaluation of Their Apoptotic Activity in Lung Cancer Cells. Chem. Pap. 2022, 76, 1225–1238. [Google Scholar] [CrossRef]
- Geetha, M.S.; Nagabhushana, H.; Shivananjaiah, H.N. Green Mediated Synthesis and Characterization of ZnO Nanoparticles Using Euphorbia Jatropa Latex as Reducing Agent. J. Sci. Adv. Mater. Devices 2016, 1, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Essien, E.R.; Atasie, V.N.; Nwude, D.O.; Adekolurejo, E.; Owoeye, F.T. Characterisation of ZnO Nanoparticles Prepared Using Aqueous Leaf Extracts of Chromolaena odorata (L.) and Manihot Esculenta (Crantz). S. Afr. J. Sci. 2022, 118, 11225. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Folorunso, A.S. A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications. Bionanoscience 2020, 10, 848–863. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shnawa, B.H.; Hamad, S.M.; Barzinjy, A.A.; Kareem, P.A.; Ahmed, M.H. Scolicidal Activity of Biosynthesized Zinc Oxide Nanoparticles by Mentha longifolia L. Leaves against Echinococcus Granulosus Protoscolices. Emergent Mater. 2022, 5, 683–693. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S.R.; Chougule, M.B.; Tekade, R.K. Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development. In Basic Fundamentals of Drug Delivery; Elsevier: New York, NY, USA, 2018; pp. 369–400. ISBN 9780128179093. [Google Scholar]
- Fu, L.; Fu, Z. Plectranthus Amboinicus Leaf Extract-Assisted Biosynthesis of ZnO Nanoparticles and Their Photocatalytic Activity. Ceram Int. 2015, 41, 2492–2496. [Google Scholar] [CrossRef]
- Torres-Rivero, K.; Bastos-Arrieta, J.; Fiol, N.; Florido, A. Metal and Metal Oxide Nanoparticles: An Integrated Perspective of the Green Synthesis Methods by Natural Products and Waste Valorization: Applications and Challenges. In Comprehensive Analytical Chemistry; Elsevier B.V.: New York, NY, USA, 2021; Volume 94, pp. 433–469. ISBN 9780323898812. [Google Scholar]
- Mahmood, S.; Mandal, U.K.; Chatterjee, B.; Taher, M. Advanced Characterizations of Nanoparticles for Drug Delivery: Investigating Their Properties through the Techniques Used in Their Evaluations. Nanotechnol. Rev. 2017, 6, 355–372. [Google Scholar] [CrossRef]
- Mudalige, T.; Qu, H.; van Haute, D.; Ansar, S.M.; Paredes, A.; Ingle, T. Characterization of Nanomaterials: Tools and Challenges. In Nanomaterials for Food Applications; Elsevier: New York, NY, USA, 2018; pp. 313–353. ISBN 9780128141311. [Google Scholar]
- Kumar, A.; Dixit, C.K. Methods for Characterization of Nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Elsevier Inc.: New York, NY, USA, 2017; pp. 44–58. ISBN 9780081005637. [Google Scholar]
- Shi, L.E.; Li, Z.H.; Zheng, W.; Zhao, Y.F.; Jin, Y.F.; Tang, Z.X. Synthesis, Antibacterial Activity, Antibacterial Mechanism and Food Applications of ZnO Nanoparticles: A Review. Food Addit. Contam. Part A 2014, 31, 173–186. [Google Scholar] [CrossRef]
- Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnol. Rep. 2020, 25, e00427. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H.S. Antimicrobial Properties of ZnO Nanomaterials: A Review. Ceram. Int. 2017, 43, 3940–3961. [Google Scholar] [CrossRef]
- Dimapilis, E.A.S.; Hsu, C.S.; Mendoza, R.M.O.; Lu, M.C. Zinc Oxide Nanoparticles for Water Disinfection. Sustain. Environ. Res. 2018, 28, 47–56. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Ma, J.; Peng, Y.; Wang, A. A Review on Bidirectional Analogies between the Photocatalysis and Antibacterial Properties of ZnO. J. Alloys Compd. 2019, 783, 898–918. [Google Scholar] [CrossRef]
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the Improvement of the Photocatalytic and Antibacterial Activities of ZnO. J. Alloys Compd. 2017, 727, 792–820. [Google Scholar] [CrossRef]
- Muenraya, P.; Sawatdee, S.; Srichana, T.; Atipairin, A. Silver Nanoparticles Conjugated with Colistin Enhanced the Antimicrobial Activity against Gram-Negative Bacteria. Molecules 2022, 27, 5780. [Google Scholar] [CrossRef] [PubMed]
- Javaid, R.; Qazi, U.Y. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. Int. J. Environ. Res Public Health 2019, 16, 2066. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dixit, U.; Singh, K.; Prakash Gupta, S.; Beg, M.S.J. Structure and Properties of Dyes and Pigments. In Dyes and Pigments; Papadakis, R., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Baruah, S.; Sinha, S.S.; Ghosh, B.; Pal, S.K.; Raychaudhuri, A.K.; Dutta, J. Photoreactivity of ZnO Nanoparticles in Visible Light: Effect of Surface States on Electron Transfer Reaction. J. Appl. Phys. 2009, 105, 074308. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, A.A.; Malik, M.A. Biogenic Fabrication of ZnO Nanoparticles Using Trigonella foenum-graecum (Fenugreek) for Proficient Photocatalytic Degradation of Methylene Blue under UV Irradiation. J. Mater. Sci. Mater. Electron. 2019, 30, 16156–16173. [Google Scholar] [CrossRef]
- Liu, F.; Leung, Y.H.; Djurišić, A.B.; Ng, A.M.C.; Chan, W.K. Native Defects in ZnO: Effect on Dye Adsorption and Photocatalytic Degradation. J. Phys. Chem. C 2013, 117, 12218–12228. [Google Scholar] [CrossRef]
- Ai, J.; Liao, W.; Zhou, Z.; Cheng, L.; Chen, Z.; Hu, C.; Zhang, Y.; Luo, S.; Li, W. The Correlation Between Structure and Photocatalytic Activity of ZnO Particles Prepared by Mild Wet Chemical Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 678, 012122. [Google Scholar] [CrossRef]
- Kusiak-Nejman, E.; Wojnarowicz, J.; Morawski, A.W.; Narkiewicz, U.; Sobczak, K.; Gierlotka, S.; Lojkowski, W. Size-Dependent Effects of ZnO Nanoparticles on the Photocatalytic Degradation of Phenol in a Water Solution. Appl. Surf. Sci. 2021, 541, 148416. [Google Scholar] [CrossRef]
- López-López, J.; Tejeda-Ochoa, A.; López-Beltrán, A.; Herrera-Ramírez, J.; Méndez-Herrera, P. Sunlight Photocatalytic Performance of Zno Nanoparticles Synthesized by Green Chemistry Using Different Botanical Extracts and Zinc Acetate as a Precursor. Molecules 2022, 27, 6. [Google Scholar] [CrossRef]
- Lu, J.; Ali, H.; Hurh, J.; Han, Y.; Batjikh, I.; Rupa, E.J.; Anandapadmanaban, G.; Park, J.K.; Yang, D.C. The Assessment of Photocatalytic Activity of Zinc Oxide Nanoparticles from the Roots of Codonopsis lanceolata Synthesized by One-Pot Green Synthesis Method. Optik (Stuttg) 2019, 184, 82–89. [Google Scholar] [CrossRef]
- Singh, N.K.; Saha, S.; Pal, A. Solar Light-Induced Photocatalytic Degradation of Methyl Red in an Aqueous Suspension of Commercial ZnO: A Green Approach. Desalin. Water Treat. 2015, 53, 501–514. [Google Scholar] [CrossRef]
- Ahmad, I.; Shukrullah, S.; Ahmad, M.; Ahmed, E.; Naz, M.Y.; Akhtar, M.S.; Khalid, N.R.; Hussain, A.; Hussain, I. Effect of Al Doping on the Photocatalytic Activity of ZnO Nanoparticles Decorated on CNTs and Graphene: Solvothermal Synthesis and Study of Experimental Parameters. Mater. Sci. Semicond. Process. 2021, 123, 105584. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Patil, R.S.; Kokate, M.R.; Shinde, D.v.; Kolekar, S.S.; Han, S.H. Synthesis and Enhancement of Photocatalytic Activities of ZnO by Silver Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 122, 113–117. [Google Scholar] [CrossRef] [PubMed]
Plant | Type of Bacteria | Method | Concentration of ZnO | Inhibition | Ref |
---|---|---|---|---|---|
T. riperia | S. auerus E. coli | Agar disk diffusion | 1.5 mg/mL | 7.67 mm 8.33 mm | [94] |
A. carnosus | S. paratyphi Vibrio cholerae S. aureus E. coli | Disc diffusion | - | 6 mm 10 mm 7 mm 9 mm | [98] |
Lavandula angustifolia | E. coli S. aureus | Well diffusion assay | 50 µg/mL | 12.33 mm 12.66 mm | [108] |
O. americanum | Bacillus cereus Clostridium penfrigens Klebsiella Pnemoniae S. paratyphi | Agar well | - | 25 mm 30 mm 27 mm 24 mm | [113] |
O. basilicum | P. aeruginosa E. coli S. aureus Bacillus subtilis | Disc diffusion | 50 µL | 10 mm 16 mm 14 mm 13 mm | [105] |
O. basilicum | S. aureus Salmonella triphimurium E. coli Listeria monocytogenes B. subtilis P. aeruginosa | Agar diffusion | 100 µg/mL | 19.3 mm 8.2 mm 13.2 mm 11.4 mm 9.3 mm 12.4 mm | [114] |
R. officinalis | S. aureus Salmonella triphimurium E. coli Listeria monocytogenes B. subtilis P. aeruginosa | Agar diffusion | 100 µg/mL | 19.2 mm 9.3 mm 12.7 mm 11.5 mm 9.0 mm | [114] |
O. basilicum | Salmonella enterica | Disk diffusion Well diffusion | 0.2 mg/mL | 14.3 mm 12.3 mm | [115] |
Phlomis | E. coli S. aureus | Disc diffusion | 2000 µg/mL | 16.8 nm 15.1 nm | [125] |
P. barbatus | B. subtilis Vibrio parahaemolyticus Proteus vulgaris | Agar well diffusion | 100 µg/mL | 19.0 mm 15.0 mm 14.0 mm | [126] |
T. grandis | S. auerus B. subtilis E. coli S. paratyphi | 100 µg/mL | 28 mm 30 mm 32 mm 29 mm | [131] |
Radiation Type | Plant | Pollutant | Concentration of Dye | % Removal | Time | Ref |
---|---|---|---|---|---|---|
UV light | M. arvensis | Malachite green | 10 ppm | 74% | 120 min | [81] |
Sun light | R. officinalis | MB | 10 mg/L | 99.64% | 45 min | [93] |
UV light Solar light | O. vulgare | Rhodamine B | 15 ppm | 94.24% 93% | 100 min 180 min | [96] |
UV light | A. carnosus | MB | 10−4 M | - | 90 min | [98] |
UV light | S. officinalis | MO | 5 ppm | 92.47% | 120 min | [127] |
UV light | S. baicalensis | MB | 50 µM | 98.6% | 210 min | [128] |
UV light | P. amboinicus | Methyl red | 10−4 M | 92.45% | 180 min | [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutukwa, D.; Taziwa, R.T.; Khotseng, L. Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review. Nanomaterials 2022, 12, 4469. https://doi.org/10.3390/nano12244469
Mutukwa D, Taziwa RT, Khotseng L. Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review. Nanomaterials. 2022; 12(24):4469. https://doi.org/10.3390/nano12244469
Chicago/Turabian StyleMutukwa, Dorcas, Raymond T. Taziwa, and Lindiwe Khotseng. 2022. "Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review" Nanomaterials 12, no. 24: 4469. https://doi.org/10.3390/nano12244469
APA StyleMutukwa, D., Taziwa, R. T., & Khotseng, L. (2022). Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review. Nanomaterials, 12(24), 4469. https://doi.org/10.3390/nano12244469