Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Characterizations of Commercially Available CNT Yarns and Their Constituent CNTs
3.2. Spectroscopic Characterizations
3.3. Electrical Conductivity
3.4. Tensile Strength
3.5. PLS Regression Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.J.; Lu, W.G.; Li, J.J.; Bai, X.D.; Gu, C.Z. Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 2005, 95, 080601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Zhang, R.; Ye, X.; Zhu, Z.; Xie, H.; Shen, B.; Cai, D.; Liu, B.; Zhang, C.; Jia, Z.; et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, C.F.; Welch, C.R. Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations. J. Chem. Phys. 2011, 134, 204708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Song, X.; Liu, X.; Yang, L.; Pan, F.; Lv, J. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem. Eng. J. 2011, 178, 26–33. [Google Scholar] [CrossRef]
- Tabani, H.; Khodaei, K.; Moghaddam, A.Z.; Alexovič, M.; Movahed, S.K.; Zare, F.D.; Dabiri, M. Introduction of graphene-periodic mesoporous silica as a new sorbent for removal: Experiment and simulation. Res. Chem. Intermed. 2019, 45, 1795–1813. [Google Scholar] [CrossRef]
- Laurent, C.; Flahaut, E.; Peigney, E.A. The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon 2010, 48, 2994–2996. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Zhou, C.; Morpurgo, A.; Soh, H.T.; Quate, C.F.; Marcus, C.; Dai, H. Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes. Appl. Phys. A 1999, 69, 305–308. [Google Scholar] [CrossRef]
- Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892–1895. [Google Scholar] [CrossRef]
- Choo, H.; Jung, Y.; Jeong, Y.; Kim, H.C.; Ku, B.-C. Fabrication and Applications of Carbon Nanotube Fibers. Carbon Lett. 2012, 13, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Behabtu, N.; Young, C.C.; Tsentalovich, D.E.; Kleinerman, O.; Wang, X.; Ma, A.W.K.; Bengio, E.A.; ter Waarbeek, R.F.; de Jong, J.J.; Hoogerwerf, R.E.; et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Janas, D.; Koziol, K.K. Carbon nanotube fibers and films: Synthesis, applications and perspectives of the direct-spinning method. Nanoscale 2016, 8, 19475–19490. [Google Scholar] [CrossRef]
- Yadav, M.D.; Dasgupta, K.; Patwardhan, A.W.; Joshi, J.B. High Performance Fibers from Carbon Nanotubes: Synthesis, Characterization, and Applications in Composites—A Review. Ind. Eng. Chem. Res. 2017, 56, 12407–12437. [Google Scholar] [CrossRef]
- Xu, W.; Chen, Y.; Zhan, H.; Wang, J.N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Tsentalovich, D.E.; Headrick, R.J.; Mirri, F.; Hao, J.; Behabtu, N.; Young, C.C.; Pasquali, M. Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties. ACS Appl. Mater. Interfaces 2017, 9, 36189–36198. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.W.; Dewey, O.S.; Headrick, R.J.; Komatsu, N.; Peraca, N.M.; Wehmeyer, G.; Kono, J.; Pasquali, M. Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers. Carbon 2021, 171, 689–694. [Google Scholar] [CrossRef]
- Wu, X.; Morimoto, T.; Mukai, K.; Asaka, K.; Okazaki, T. Relationship between mechanical and electrical properties of continuous polymer-free carbon nanotube fibers by wet-spinning method and nanotube-length estimated by far-infrared spectroscopy. J. Phys. Chem. C 2016, 120, 20419–20427. [Google Scholar] [CrossRef]
- Wu, X.; Mukai, K.; Asaka, K.; Morimoto, T.; Okazaki, T. Effect of surfactants and dispersion methods on properties of single-walled carbon nanotube fibers formed by wet-spinning. Appl. Phys. Express 2017, 10, 055101. [Google Scholar] [CrossRef]
- Tajima, N.; Watanabe, T.; Morimoto, T.; Kobashi, K.; Mukai, K.; Asaka, K.; Okazaki, T. Nanotube Length and Density Dependences of Electrical and Mechanical Properties of Carbon Nanotube Fibres Made by Wet Spinning. Carbon 2019, 152, 1–6. [Google Scholar] [CrossRef]
- Morimoto, T.; Joung, S.-K.; Saito, T.; Futaba, D.N.; Hata, K.; Okazaki, T. Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes. ACS Nano 2014, 8, 9897–9904. [Google Scholar] [CrossRef]
- Morimoto, T.; Ichida, M.; Ikemoto, Y.; Okazaki, T. Temperature dependence of plasmon resonance in single-walled carbon nanotubes. Phys. Rev. B 2016, 93, 195409. [Google Scholar] [CrossRef]
- Morimoto, T.; Okazaki, T. Optical resonance in far-infrared spectra of multiwalled carbon nanotubes. Appl. Phys. Express 2015, 8, 055101. [Google Scholar] [CrossRef]
- Nakanishi, T.; Ando, T. Optical Response of Finite-Length Carbon Nanotubes. J. Phys. Soc. Jpn. 2009, 78, 114708. [Google Scholar] [CrossRef]
- Wold, H. Multivariate Analysis; Academic Press: New York, NY, USA, 1966; p. 391. [Google Scholar]
- Muroga, S.; Hikima, Y.; Ohsima, M. Visualization of hydrolysis in polylactide using near-infrared hyperspectral imaging and chemometrics. J. Appl. Polym. Sci. 2018, 135, 45898. [Google Scholar] [CrossRef]
- Muroga, S.; Hikima, Y.; Ohsima, M. Near-Infrared Spectroscopic Evaluation of the Water Content of Molded Polylactide under the Effect of Crystallization. Appl. Spectrosc. 2017, 71, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Headrick, R.J.; Tsentalovich, D.E.; Berdegué, J.; Bengio, E.A.; Liberman, L.; Kleinerman, O.; Lucas, M.S.; Talmon, Y.; Pasquali, M. Structure–Property Relations in Carbon Nanotube Fibers by Downscaling Solution Processing. Adv. Mater. 2018, 30, 1704482. [Google Scholar] [CrossRef]
- Ghemes, A.; Minami, Y.; Muramatsu, J.; Okada, M.; Mimura, H.; Inoue, Y. Fabrication and mechanical properties of carbon nanotube yarns spun from ultra-long multi-walled carbon nanotube arrays. Carbon 2012, 50, 4579–4587. [Google Scholar] [CrossRef]
- Chaffee, J.; Lashmore, D.; Lewis, D.; Mann, J.; Schauer, M.; White, B. Direct Synthesis of CNT Yarns and Sheets. Nsti Nanotech 2008, 3, 118–121. [Google Scholar]
- Paukner, C.; Koziol, K.K.K. Ultra-pure single wall carbon nanotube fibres continuously spun without promoter. Sci. Rep. 2014, 4, 3903. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.N.; Luo, X.G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 2014, 5, 3848. [Google Scholar] [CrossRef]
- Zhong, X.-H.; Li, Y.-L.; Liu, Y.-K.; Qiao, X.-H.; Feng, Y.; Liang, J.; Jin, J.; Zhu, L.; Hou, F.; Li, J.-Y. Continuous multilayered carbon nanotube yarns. Adv. Mater. 2010, 22, 692–696. [Google Scholar] [CrossRef]
- Mukai, K.; Asaka, K.; Wu, X.; Morimoto, T.; Okazaki, T.; Saito, T.; Yumura, M. Wet spinning of continuous polymer-free carbon-nanotube fibers with high electrical conductivity and strength. Appl. Phys. Express 2016, 9, 055101. [Google Scholar] [CrossRef]
- Moore, K.E.; Flavel, B.S.; Ellis, A.V.; Shapter, J.G. Comparison of double-walled with single-walled carbon nanotube electrodes by electrochemistry. Carbon 2011, 49, 2639–2647. [Google Scholar] [CrossRef]
- Chapkin, W.A.; Wenderott, J.K.; Green, P.F.; Taub, A.I. Length dependence of electrostatically induced carbon nanotube alignment. Carbon 2018, 131, 275–282. [Google Scholar] [CrossRef]
- Miao, M. Characteristics of carbon nanotube yarn structure unveiled by acoustic wave propagation. Carbon 2015, 91, 163–170. [Google Scholar] [CrossRef]
- Alemán, B.; Reguero, V.; Mas, B.; Vilatela, J.J. Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning. ACS Nano 2015, 9, 7392–7398. [Google Scholar] [CrossRef]
- Park, O.K.; Choi, H.; Jeong, H.; Jung, Y.; Yu, J.; Lee, J.K.; Hwang, J.Y.; Kim, S.M.; Jeong, Y.; Park, C.R.; et al. High-modulus and strength carbon nanotube fibers using molecular cross-linking. Carbon 2017, 118, 413–421. [Google Scholar] [CrossRef]
CNT Yarns | Hamamatsu Carbonics | Taiyo Nippon Sanso | Nanocomp Miralon | Meijo EC-Y Type I | Meijo EC-Y Type II | DexMat |
---|---|---|---|---|---|---|
Yarn diameter (μm) | 59 | 31 | 230 | 90 | 76 | 20 |
Average diameter of CNTs (nm) | 45 ± 1 | 12 ± 0.2 | 5.3 ± 0.1 | 1.8 ± 0.05 | 1.7 ± 0.04 | 2.2 ± 0.05 |
Average wall number | 50 ± 2 | 8.5 ± 0.1 | 1.9 ± 0.03 | 1.4 ± 0.05 | 1.4 ± 0.05 | 1.6 ± 0.05 |
CNT type | MWCNT | MWCNT | FWCNT | SWCNT | SWCNT | FWCNT |
WAXD (002) FWHM (degree) | 42.8 | 23.7 | 9.4 | 21.4 | 38.4 | 7.7 |
Herman orientation factor | 0.86 | 0.89 | 0.94 | 0.82 | 0.78 | 0.94 |
G/D ratio | 2.2 ± 0.03 | 1.2 ± 0.03 | 3.3 ± 0.3 | 50 ± 5 | 98 ± 9 | 31 ± 2 |
CNT effective length (nm) | 270 | 130 | 470 | 2300 | 2300 | 1800 |
CNT length by AFM (μm) | 11 ± 2 (a) | 1.1 ± 0.07 (a) | 3.9 ± 0.4 (b) | 3.2 ± 0.2 (b) | 1.7 ± 0.1 (b) | 1.3 ± 0.1 (b) |
Yarn Density (mg/cm3) | 450 | 1111 | 985 | 353 | 575 | 1670 |
Electrical conductivity (S/cm) | 462 | 588 | 16,627 | 1725 | 3334 | 70,659 |
Tensile strength (MPa) | 151 | 716 | 1193 | 69 | 111 | 1595 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, T.; Yamazaki, S.; Yamashita, S.; Inaba, T.; Muroga, S.; Morimoto, T.; Kobashi, K.; Okazaki, T. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods. Nanomaterials 2022, 12, 593. https://doi.org/10.3390/nano12040593
Watanabe T, Yamazaki S, Yamashita S, Inaba T, Muroga S, Morimoto T, Kobashi K, Okazaki T. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods. Nanomaterials. 2022; 12(4):593. https://doi.org/10.3390/nano12040593
Chicago/Turabian StyleWatanabe, Takayuki, Satoshi Yamazaki, Satoshi Yamashita, Takumi Inaba, Shun Muroga, Takahiro Morimoto, Kazufumi Kobashi, and Toshiya Okazaki. 2022. "Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods" Nanomaterials 12, no. 4: 593. https://doi.org/10.3390/nano12040593