Effect of Intermediate Semiconducting TiOx Thin Films on Nanoparticle-Mediated Electron Transfer: Electrooxidation of CO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Fabrication of Pyrolyzed Photoresist Film (PPF) Electrodes
2.3. Deposition of ALD Thin Films on PPF Electrodes
2.4. Synthesis and Immobilization of Au DENs
2.5. Synthesis and Immobilization of Pt DENs
2.6. UV/O3 Method for Decomposition of G6NH2 and G6OH Dendrimers
2.7. Structural Characterization
2.8. Electrochemical Characterization
3. Results and Discussion
3.1. Properties of TiOx (x = 1.9; and 2.0) Thin Films
3.2. CO Electrooxidation at PPF-Supported Au147 NPs
3.3. CO Electrooxidation at Au147 NPs on TiOx Thin Films
3.4. CO Electrooxidation at PPF-Supported Pt55 NPs
3.5. CO Electrooxidation at Pt55 NPs on TiOx Thin Films
3.6. Properties of Al2O3 Thin Films
3.7. CO Electrooxidation at Al2O3 Thin Film-Supported Pt55 NPs
3.8. Electrochemical Characterization of TiOx Thin Film Rectifying Behavior
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chazalviel, J.-N.; Allongue, P. On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer. J. Am. Chem. Soc. 2011, 133, 762–764. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Bradbury, C.R.; Fermín, D.J. Long-range electronic communication between metal nanoparticles and electrode surfaces separated by polyelectrolyte multilayer films. J. Phys. Chem. C 2008, 112, 6832–6841. [Google Scholar] [CrossRef]
- Shein, J.B.; Lai, L.M.H.; Eggers, P.K.; Paddon-Row, M.N.; Gooding, J.J. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 2009, 25, 11121–11128. [Google Scholar] [CrossRef] [PubMed]
- Kissling, G.P.; Miles, D.O.; Fermín, D.J. Electrochemical charge transfer mediated by metal nanoparticles and quantum dots. Phys. Chem. Chem. Phys. 2011, 13, 21175–21185. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Scott, R.W.J.; Crooks, R.M. Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Langmuir 2004, 20, 2915–2920. [Google Scholar] [CrossRef] [PubMed]
- Barfidokht, A.; Ciampi, S.; Luais, E.; Darwish, N.; Gooding, J.J. Distance-dependent electron transfer at passivated electrodes decorated by gold nanoparticles. Anal. Chem. 2013, 85, 1073–1080. [Google Scholar] [CrossRef]
- Ostojic, N.; Thorpe, J.H.; Crooks, R.M. Electron transfer facilitated by dendrimer-encapsulated Pt nanoparticles across ultrathin, insulating oxide films. J. Am. Chem. Soc. 2016, 138, 6829–6837. [Google Scholar] [CrossRef]
- Anderson, M.J.; Ostojic, N.; Crooks, R.M. Microelectrochemical flow cell for studying electrocatalytic reactions on oxide-coated electrodes. Anal. Chem. 2017, 89, 11027–11035. [Google Scholar] [CrossRef]
- Ostojic, N.; Duan, Z.; Galyamova, A.; Henkelman, G.; Crooks, R.M. Electrocatalytic study of the oxygen reduction reaction at gold nanoparticles in the absence and presence of interactions with SnOx supports. J. Am. Chem. Soc. 2018, 140, 13775–13785. [Google Scholar] [CrossRef]
- Galyamova, A.; Shin, K.; Henkelman, G.; Crooks, R.M. Effect of TiOx substrate interactions on the electrocatalytic oxygen reduction reaction at Au nanoparticles. J. Phys. Chem. C 2020, 124, 10045–10056. [Google Scholar] [CrossRef]
- Ranganathan, S.; McCreery, R.L. Electroanalytical performance of carbon films with near-atomic flatness. Anal. Chem. 2001, 73, 893–900. [Google Scholar] [CrossRef]
- Gröhn, F.; Bauer, B.J.; Akpalu, Y.A.; Jackson, C.L.; Amis, E.J. Dendrimer templates for the formation of gold nanoclusters. Macromolecules 2000, 33, 6042–6050. [Google Scholar] [CrossRef]
- Strasser, J.W.; Hersbach, T.J.P.; Liu, J.; Lapp, A.S.; Frenkel, A.I.; Crooks, R.M. Electrochemical cleaning stability and oxygen reduction reaction activity of 1-2 nm dendrimer-encapsulated Au nanoparticles. ChemElectroChem 2021, 8, 2545–2555. [Google Scholar] [CrossRef]
- Loussaert, J.A.; Fosdick, S.E.; Crooks, R.M. Electrochemical properties of metal-oxide-coated carbon electrodes prepared by atomic layer deposition. Langmuir 2014, 30, 13707–13715. [Google Scholar] [CrossRef] [PubMed]
- NIST X-ray Photoelectron Spectroscopy Database. Available online: https://srdata.nist.gov/xps/Default.aspx (accessed on 25 October 2020).
- Niemelä, J.-P.; Marin, G.; Karppinen, M. Titanium dioxide thin films by atomic layer deposition: A review. Semicond. Sci. Technol. 2017, 32, 93005. [Google Scholar] [CrossRef]
- Hayden, B.E.; Pletcher, D.; Rendall, M.E.; Suchsland, J.-P. CO oxidation on gold in acidic environments: Particle size and substrate effects. J. Phys. Chem. C 2007, 111, 17044–17051. [Google Scholar] [CrossRef]
- Rodriguez, P.; Plana, D.; Fermin, D.J.; Koper, M.T. New insights into the catalytic activity of gold nanoparticles for CO oxidation in electrochemical media. J. Catal. 2014, 311, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Geng, D.; Lu, G. Size effect of gold nanoparticles on the electrocatalytic oxidation of carbon monoxide in alkaline solution. J. Nanopart. Res. 2007, 9, 1145–1151. [Google Scholar] [CrossRef]
- Boddy, P.J. Oxygen evolution on semiconducting TiO2. J. Electrochem. Soc. 1968, 115, 199. [Google Scholar] [CrossRef]
- Abe, K.; Uchida, H.; Inukai, J. Electro-oxidation of CO saturated in 0.1 M HClO4 on basal and stepped Pt single-crystal electrodes at room temperature accompanied by surface reconstruction. Surfaces 2019, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.M.; Zhang, L.; Wu, D.; Brankovic, S.R.; Henkelman, G.; Crooks, R.M. A Theoretical and experimental in-situ electrochemical infrared spectroscopy study of adsorbed CO on Pt dendrimer-encapsulated nanoparticles. J. Electrochem. Soc. 2016, 163, H3061–H3065. [Google Scholar] [CrossRef] [Green Version]
- Weir, M.G.; Myers, V.S.; Frenkel, A.I.; Crooks, R.M. In situ X-ray absorption analysis of ∼1.8 nm dendrimer-encapsulated Pt nanoparticles during electrochemical CO oxidation. ChemPhysChem 2010, 11, 2942–2950. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.C.S.; Lebedeva, N.P.; Housmans, T.H.M.; Koper, M.T.M. Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes. Top. Catal. 2007, 46, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Lebedeva, N.; Koper, M.; Herrero, E.; Feliu, J.; van Santen, R. Cooxidation on stepped Pt[n(111) × (111)] electrodes. J. Electroanal. Chem. 2000, 487, 37–44. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Perfamon Press: Oxford, UK, 1966. [Google Scholar]
- Torresi, R.M.; Cámara, O.R.; de Pauli, C.P.; Giordano, M.C. Hydrogen evolution reaction on anodic titanium oxide films. Electrochim. Acta 1987, 32, 1291–1301. [Google Scholar] [CrossRef]
- Filatova, E.O.; Konashuk, A.S. Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: Connection with different local symmetries. J. Phys. Chem. C 2015, 119, 20755–20761. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley: Chichester, NY, USA, 2001. [Google Scholar]
- Kavan, L.; Steier, L.; Grätzel, M. Ultrathin buffer layers of SnO2 by atomic layer deposition: Perfect blocking function and thermal stability. J. Phys. Chem. C 2017, 121, 342–350. [Google Scholar] [CrossRef]
- Kavan, L.; Tétreault, N.; Moehl, T.; Grätzel, M. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16408–16418. [Google Scholar] [CrossRef]
- Jayashree, S.; Ashokkumar, M. Switchable intrinsic defect chemistry of titania for catalytic applications. Catalysts 2018, 8, 601. [Google Scholar] [CrossRef] [Green Version]
- Powell, C. X-ray Photoelectron Spectroscopy Database XPS, Version 4.1, NIST Standard Reference Database 20. 1989. Available online: https://srdata.nist.gov/xps/ (accessed on 18 December 2021). [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galyamova, A.; Crooks, R.M. Effect of Intermediate Semiconducting TiOx Thin Films on Nanoparticle-Mediated Electron Transfer: Electrooxidation of CO. Nanomaterials 2022, 12, 855. https://doi.org/10.3390/nano12050855
Galyamova A, Crooks RM. Effect of Intermediate Semiconducting TiOx Thin Films on Nanoparticle-Mediated Electron Transfer: Electrooxidation of CO. Nanomaterials. 2022; 12(5):855. https://doi.org/10.3390/nano12050855
Chicago/Turabian StyleGalyamova, Aigerim, and Richard M. Crooks. 2022. "Effect of Intermediate Semiconducting TiOx Thin Films on Nanoparticle-Mediated Electron Transfer: Electrooxidation of CO" Nanomaterials 12, no. 5: 855. https://doi.org/10.3390/nano12050855
APA StyleGalyamova, A., & Crooks, R. M. (2022). Effect of Intermediate Semiconducting TiOx Thin Films on Nanoparticle-Mediated Electron Transfer: Electrooxidation of CO. Nanomaterials, 12(5), 855. https://doi.org/10.3390/nano12050855