Biomimetic Superhydrophobic Films with an Extremely Low Roll-Off Angle Modified by F16CuPc via Two-Step Fabrication
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of the Films
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285. [Google Scholar] [CrossRef]
- Yong, J.L.; Chen, F.; Yang, Q.; Huo, J.L.; Hou, X. Superoleophobic surfaces. Chem. Soc. Rev. 2017, 46, 4168–4217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Sathasivam, S.; Song, J.L.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Wong, T.S.; Alvarenga, J.; Kreder, M.J.; Adorno-Martinez, W.E.; Aizenberg, J. Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance. ACS Nano 2012, 6, 6569–6577. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.X.; Li, C.; Tong, W.; Xiong, D.S.; Li, Z.X.; Wu, Z.L. High-speed wire electrical discharge machining to create superhydrophobic surfaces for magnesium alloys with high corrosion and wear resistance. Mater. Corros. 2020, 71, 1711–1720. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, D.; Lu, Z. Advantage of Super-hydrophobic Surface as a Barrier against Atmospheric Corrosion Induced by Salt Deliquescence. Corros. Sci. 2015, 90, 23–32. [Google Scholar] [CrossRef]
- Liu, Y.; Bai, Y.; Jin, J.F.; Tian, L.M.; Han, Z.W.; Ren, L.Q. Facile fabrication of biomimetic superhydrophobic surface with anti-frosting on stainless steel substrate. Appl. Surf. Sci. 2015, 355, 1238–1244. [Google Scholar] [CrossRef]
- Liang, Z.H.; Li, W.; Dong, B.H.; Sun, Y.K.; Tang, H.; Zhao, L.; Wang, S.M. Double-function SiO2-DMS coating with antireflection and superhydrophobic surface. Chem. Phys. Lett. 2019, 716, 211–214. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yan, J.M.; Wang, J.G.; Zhang, X.M.; Wei, L.Q.; Du, Y.C.; Yu, B.; Ye, S.F. Superhydrophobic metal organic framework doped polycarbonate porous monolith for efficient selective removal oil from water. Chemosphere 2020, 260, 127583. [Google Scholar] [CrossRef]
- Telecka, A.; Li, T.; Ndoni, S.; Taboryski, R. Nanotextured Si surfaces derived from block-copolymer self-assembly with superhydrophobic, superhydrophilic, or superamphiphobic properties. Rsc Adv. 2018, 8, 4204–4213. [Google Scholar] [CrossRef] [Green Version]
- Ke, Q.P.; Fu, W.Q.; Jin, H.L.; Zhang, L.; Tang, T.D.; Zhang, J.F. Fabrication of mechanically robust superhydrophobic surfaces based on silica micro-nanoparticles and polydimethylsiloxane. Surf. Coat. Technol. 2011, 205, 4910–4914. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Recent advances in the potential applications of bioinspired superhydrophobic materials. J. Mater. Chem. A 2014, 2, 16319–16359. [Google Scholar] [CrossRef]
- Lambley, H.; Schutzius, T.M.; Poulikakos, D. Superhydrophobic surfaces for extreme environmental conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 27188–27194. [Google Scholar] [CrossRef]
- Ren, G.N.; Song, Y.M.; Li, X.M.; Wang, B.; Zhou, Y.L.; Wang, Y.Y.; Ge, B.; Zhu, X.T. A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property. J. Colloid Interface Sci. 2018, 522, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.X.; Li, S.H.; Huang, J.Y.; Mihailiasa, M.; Lai, Y.K. Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation. Mater. Des. 2017, 134, 342–351. [Google Scholar] [CrossRef]
- Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R.J.; Chmelka, B.F.; Ryoo, R. Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science 2011, 333, 328–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Wei, Y.Y.; Li, L.B.; Zhang, T.; Wang, H.H.; Xue, J.; Ding, L.X.; Wang, S.Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J.C.; Bernardo, P.; Bazzarelli, F.; McKeown, N.B. An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science 2013, 339, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wu, X.; Caro, J.; Huang, A. Seeding-free synthesis of high-performance MFI zeolite membranes on superhydrophobic supports inspired by “like grows like” principle. Microporous Mesoporous Mater. 2019, 288, 109589. [Google Scholar] [CrossRef]
- Han, B.; Zhao, L.; Song, Y.; Zhao, Z.; Yang, D.; Liu, R.; Liu, G. A superhydrophobic mesostructured silica as a chiral organometallic immobilization platform for heterogeneous asymmetric catalysis. Catal. Sci. Technol. 2018, 8, 2920–2927. [Google Scholar] [CrossRef]
- Chakradhar, R.P.S.; Kumar, V.D.; Rao, J.L.; Basu, B.J. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour. Appl. Surf. Sci. 2011, 257, 8569–8575. [Google Scholar] [CrossRef]
- Wang, T.L.; Lu, Z.C.; Wang, X.Q.; Zhang, Z.C.; Zhang, Q.; Yan, B.; Wang, Y.Q. A compound of ZnO/PDMS with photocatalytic, self-cleaning and antibacterial properties prepared via two-step method. Appl. Surf. Sci. 2021, 550, 149286. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Liao, T.; Liu, K.S.; Jiang, L.; Kim, J.H.; Dou, S.X. Robust superhydrophobicity of hierarchical ZnO hollow microspheres fabricated by two-step self-assembly. Nano Res. 2013, 6, 726–735. [Google Scholar] [CrossRef]
- Yin, S.H.; Wu, D.X.; Yang, J.; Lei, S.M.; Kuang, T.C.; Zhu, B. Fabrication and surface characterization of biomimic superhydrophobic copper surface by solution-immersion and self-assembly. Appl. Surf. Sci. 2011, 257, 8481–8485. [Google Scholar] [CrossRef]
- Guo, F.; Wen, Q.Y.; Peng, Y.B.; Guo, Z.G. Multifunctional hollow superhydrophobic SiO2 microspheres with robust and self-cleaning and separation of oil/water emulsions properties. J. Colloid Interface Sci. 2017, 494, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Q.; Feng, R.T.; Hua, J.; Wang, Z.B. A novel superhydrophobic surface based on low-density polyethylene/ethylene-propylene-diene terpolymer thermoplastic vulcanizate. Polym. Adv. Technol. 2018, 29, 302–309. [Google Scholar] [CrossRef]
- Seo, M.S.; Kim, J.H.; Kim, S.S.; Kang, H.; Sohn, B.H. Transferrable superhydrophobic TiO2 nanorods on reduced graphene oxide films using block copolymer templates. Nanotechnology 2015, 26, 165302. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Z.; Li, L.; Jin, X.; Ding, L.H.; Wang, T.H. Preparation of Organic/Inorganic Membrane by PDMS Low-temperature Pyrolysis. J. Inorg. Mater. 2014, 29, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wang, F.J.; Li, W.; Ou, J.F.; Li, C.Q.; Amirfazli, A. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating. Appl. Phys. A 2016, 122, s00339-015-9525-1. [Google Scholar] [CrossRef]
- Lee, H.K.; Shin, Y.C.; Kwon, D.S.; Lee, C.H. Organic light-emitting diodes with F16CuPC as an efficient hole-injection layer. J. Korean Phys. Soc. 2006, 49, 1037–1041. [Google Scholar]
- Ichikawa, M.; Kobayashi, K.; Koyama, T.; Taniguchi, Y. Intense and efficient ultraviolet electroluminescence from organic light-emitting devices with fluorinated copper phthalocyanine as hole injection layer. Thin Solid Films 2007, 515, 3932–3935. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.X.; Dai, J.G.; Wang, H.B.; Geng, Y.H.; Yan, D.H. Organic photovoltaic cells using hexadecafluorophthalocyaninatocopper (F16CuPc) as electron acceptor material. Chem. Phys. Lett. 2007, 446, 329–332. [Google Scholar] [CrossRef]
- Park, J.H.; Cho, S.W.; Park, S.H.; Jeong, J.G.; Kim, H.J.; Yi, Y.; Cho, M.H. The effect of copper hexadecafluorophthalocyanine (F16CuPc) inter-layer on pentacene thin-film transistors. Synth. Met. 2010, 160, 108–112. [Google Scholar] [CrossRef]
- Zhang, G.J.; Ma, F.; Wang, L.Z.; Sun, B.; Zhao, J.P.; Liu, F.D. Synthesis, characterization of copper perfluorophthalocyanine (F16CuPc) and its application in organic thin-film transistors. Mater. Tehnol. 2019, 53, 827–831. [Google Scholar] [CrossRef]
- Nath, D.; Dey, P.; Joseph, A.M.; Rakshit, J.K.; Roy, J.N. Photocurrent generation under forward bias with interfacial tunneling of carrier at pentacene/F16CuPc heterojunction photodetector. J. Alloys Compd. 2020, 815, 152401. [Google Scholar] [CrossRef]
- Lian, H.; Pan, M.A.; Han, J.B.; Cheng, X.Z.; Liang, J.E.; Hua, W.Q.; Qu, Y.Q.; Wu, Y.C.; Dong, Q.C.; Wei, B.; et al. A MoSe2 quantum dot modified hole extraction layer enables binary organic solar cells with improved efficiency and stability. J. Mater. Chem. A 2021, 9, 16500–16509. [Google Scholar] [CrossRef]
- Sun, S.J.; Li, H.; Guo, Y.H.; Mi, H.Y.; He, P.; Zheng, G.Q.; Liu, C.T.; Shen, C.Y. Superefficient and robust polymer coating for bionic manufacturing of superwetting surfaces with “rose petal effect” and “lotus leaf effect”. Prog. Org. Coat. 2021, 151, 106090. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.L.; Wang, W.B.; Du, F.; Ren, L.Q. A bio-inspired superhydrophobic surface for fog collection and directional water transport. J. Alloys Compd. 2020, 819, 152968. [Google Scholar] [CrossRef]
- Jarig, J.S.; Lee, J.; Koo, W.T.; Kim, D.H.; Cho, H.J.; Shin, H.; Kim, I.D. Pore-Size-Tuned Graphene Oxide Membrane as a Selective Molecular Sieving Layer: Toward Ultraselective Chemiresistors. Anal. Chem. 2020, 92, 957–965. [Google Scholar]
- Vivo-Vilches, J.F.; Perez-Cadenas, A.F.; Maldonado-Hodar, F.J.; Carrasco-Marin, F.; Siquet, C.; Ribeiro, A.M.; Ferreira, A.F.P.; Rodrigues, A.E. From Carbon Molecular Sieves to VOCs filters: Carbon gels with tailored porosity for hexane isomers adsorption and separation. Microporous Mesoporous Mater. 2018, 270, 161–167. [Google Scholar] [CrossRef]
- Xue, C.Y.; Zhang, W.; Choo, W.H.S.; Yang, K.L. Simplest Method for Creating Micropatterned Nanostructures on PDMS with UV Light. Langmuir 2011, 27, 13410–13414. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Hu, T.; Xu, Y.; Li, X.; Shi, W.; Lin, Y.; Xu, T.; Wei, B. Biomimetic Superhydrophobic Films with an Extremely Low Roll-Off Angle Modified by F16CuPc via Two-Step Fabrication. Nanomaterials 2022, 12, 953. https://doi.org/10.3390/nano12060953
Zhou P, Hu T, Xu Y, Li X, Shi W, Lin Y, Xu T, Wei B. Biomimetic Superhydrophobic Films with an Extremely Low Roll-Off Angle Modified by F16CuPc via Two-Step Fabrication. Nanomaterials. 2022; 12(6):953. https://doi.org/10.3390/nano12060953
Chicago/Turabian StyleZhou, Pengchao, Tengda Hu, Yachen Xu, Xiang Li, Wei Shi, Yang Lin, Tao Xu, and Bin Wei. 2022. "Biomimetic Superhydrophobic Films with an Extremely Low Roll-Off Angle Modified by F16CuPc via Two-Step Fabrication" Nanomaterials 12, no. 6: 953. https://doi.org/10.3390/nano12060953
APA StyleZhou, P., Hu, T., Xu, Y., Li, X., Shi, W., Lin, Y., Xu, T., & Wei, B. (2022). Biomimetic Superhydrophobic Films with an Extremely Low Roll-Off Angle Modified by F16CuPc via Two-Step Fabrication. Nanomaterials, 12(6), 953. https://doi.org/10.3390/nano12060953