Manufacturing of Textured Bulk Fe-SmCo5 Magnets by Severe Plastic Deformation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sample Processing and Magnetic Properties
3.2. X-ray Texture Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, D.; Yue, M.; Zuo, J.; Pan, R.; Zhang, D.; Liu, W.; Zhang, J.; Guo, Z.; Li, W. Structure and magnetic properties of bulk anisotropic SmCo5/α-Fe nanocomposite permanent magnets prepared via a bottom up approach. J. Alloy. Compd. 2012, 538, 173–176. [Google Scholar] [CrossRef]
- Kneller, E.F.; Hawig, R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991, 27, 3588–3560. [Google Scholar] [CrossRef]
- Fischer, R.; Schrefl, T.; Kronmuller, H.; Fidler, J. Grain-size dependence of remanence and coercive field of¨ isotropic nanocrystalline composite permanent magnets. J. Magn. Magn. Mater. 1996, 153, 35–49. [Google Scholar] [CrossRef]
- Shu-Li, H.; Hong-Wei, Z.; Chuan-Bing, R.; Ren-Jie, C.; Bao-Gen, S. Effects of grain size distribution on remanence and coercivity of Pr2Fe14B nanocrystalline magnet. Chin. Phys. 2005, 14, 1055. [Google Scholar] [CrossRef]
- Yue, M.; Zhang, X.; Liu, J.P. Fabrication of bulk nanostructured permanent magnets with high energy density: Challenges and approaches. Nanoscale 2017, 9, 3674–3697. [Google Scholar] [CrossRef] [PubMed]
- Rong, C.-B.; Nguyen, V.V.; Liu, J.P. Anisotropic nanostructured magnets by magnetic-field-assisted processing. J. Appl. Phys. 2010, 107, 09A717. [Google Scholar] [CrossRef]
- Cui, B.; Gabay, A.; Li, W.; Marinescu, M.; Liu, J.; Hadjipanayis, G. Anisotropic SmCo5 nanoflakes by surfactant assisted high energy ball milling. J. Appl. Phys. 2010, 107, 09A721. [Google Scholar] [CrossRef]
- Rong, C.; Zhang, Y.; Poudyal, N.; Xiong, X.; Kramer, M.J.; Liu, J.P. Fabrication of bulk nanocomposite magnets via severe plastic deformation and warm compaction. Appl. Phys. Lett. 2010, 96, 102513. [Google Scholar] [CrossRef]
- Weissitsch, L.; Stückler, M.; Wurster, S.; Knoll, P.; Krenn, H.; Pippan, R.; Bachmaier, A. Strain Induced Anisotropic Magnetic Behaviour and Exchange Coupling Effect in Fe-SmCo5 Permanent Magnets Generated by High Pressure Torsion. Crystals 2020, 10, 1026. [Google Scholar] [CrossRef]
- Li, H.; Li, W.; Guo, D.; Zhang, X. Tuning the microstructure and magnetic properties of bulk nanocomposite magnets with large strain deformation. J. Magn. Magn. Mater. 2017, 425, 84–89. [Google Scholar] [CrossRef]
- Shchetinin, I.V.; Bordyuzhin, I.G.; Sundeev, R.V.; Menushenkov, V.P.; Kamynin, A.V.; Verbetsky, V.N.; Savchenko, A.G. Structure and magnetic properties of Sm2Fe17Nx alloys after severe plastic deformation by high pressure torsion. Mater. Lett. 2020, 274, 127993. [Google Scholar] [CrossRef]
- Gražulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, R.N.; Moeck, P.; Downs, T.R.; le Bail, A. Crystallography open database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012, 40, D420–D427. [Google Scholar] [CrossRef] [PubMed]
- Gammer, C.; Mangler, C.; Rentenberger, C.; Karnthaler, H. Quantitative local profile analysis of nanomaterials by electron diffraction. Scr. Mater. 2010, 63, 312–315. [Google Scholar] [CrossRef]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Texture analysis with MTEX–free and open source software toolbox. Solid State Phenom. 2010, 160, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Wenk, H.-R.; Grigull, S. Synchrotron texture analysis with area detectors. J. Appl. Crystallogr. 2003, 36, 1040–1049. [Google Scholar] [CrossRef]
- Breton, J.M.L.; Larde, R.; Chiron, H.; Pop, V.; Givord, D.; Isnard, O.; Chicinas, I. A structural investigation’ of SmCo5/Fe nanostructured alloys obtained by high-energy ball milling and subsequent annealing. J. Phys. D Appl. Phys. 2010, 43, 085001. [Google Scholar] [CrossRef] [Green Version]
- Pop, V.; Dorolti, E.; Vaju, C.; Gautron, E.; Isnard, O.; le Breton, J.-M.; Chicinas, I. Structural and magnetic behaviour of SmCo5/α-Fe nanocomposites obtained by mechanical milling and subsequent annealing. Rom. Rep. Phys. 2010, 55, 127–136. [Google Scholar]
- Shen, Y.; Huang, M.Q.; Turgut, Z.; Lucas, M.S.; Michel, E.; Horwath, J.C. Effect of milling time on magnetic properties and structures of bulk Sm-Co/α-(Fe, Co) nanocomposite magnets. J. Appl. Phys. 2012, 111, 07B512. [Google Scholar] [CrossRef]
- Xiong, X.; Rong, C.; Rubanov, S.; Zhang, Y.; Liu, J. Atom probe study on the bulk nanocomposite SmCo/Fe permanent magnet produced by ball-milling and warm compaction. J. Magn. Magn. Mater. 2011, 323, 2855–2858. [Google Scholar] [CrossRef]
- Foner, S.; McNiff, E., Jr.; Martin, D.; Benz, M. Magnetic properties of cobalt-samarium with a 24-MGOe energy product. Appl. Phys. Lett. 1972, 20, 447–449. [Google Scholar] [CrossRef]
- Kin, M.; Kura, H.; Tanaka, M.; Hayashi, Y.; Hasaegawa, J.; Ogawa, T. Improvement of saturation magnetization of Fe nanoparticles by post-annealing in a hydrogen gas atmosphere. J. Appl. Phys. 2015, 117, 17E714. [Google Scholar] [CrossRef]
- Chau, R.; Maple, M.; Nellis, W. Shock compaction of SmCo5 particles. J. Appl. Phys. 1996, 79, 9236–9244. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.-Y.; Zhang, H.-W.; Shen, B.-G. Structure, magnetic properties, and coercivity mechanism of nanocomposite SmCo5/α-Fe magnets prepared by mechanical milling. J. Appl. Phys. 2001, 89, 5601–5605. [Google Scholar] [CrossRef]
- Skomski, R.; Manchanda, P.; Kumar, P.; Balamurugan, B.; Kashyap, A.; Sellmyer, D.J. Predicting the future of permanent-magnet materials. IEEE Trans. Magn. 2013, 49, 3215–3220. [Google Scholar] [CrossRef] [Green Version]
- Blundell, S. Magnetism in Condensed Matter; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Coey, J.M. Magnetism and Magnetic Materials; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Ermolenko, A. Magnetocrystalline anisotropy of rare earth intermetallics. IEEE Trans. Magn. 1976, 12, 992–996. [Google Scholar] [CrossRef]
- Jiang, J.; Bader, S. Rational design of the exchange-spring permanent magnet. J. Phys. Condens. Matter 2014, 26, 064214. [Google Scholar] [CrossRef] [PubMed]
- Nutor, R.K.; Fan, X.; Ren, S.; Chen, M.; Fang, Y. Research progress of stress-induced magnetic anisotropy in Fe-based amorphous and nanocrystalline alloys. J. Electromagn. Anal. Appl. 2017, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Yue, M.; Zhang, D.; Li, Y.; Xu, X.; Li, H.; Xi, W. Anisotropic SmCo 5 Nanocrystalline Magnet Prepared by Hot Deformation With Bulk Amorphous Precursors. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Schönhöbel, A.M.; Madugundo, R.; Barandiarán, J.M.; Hadjipanayis, G.C.; Palanisamy, D.; Schwarz, T.; Schrefl, T.; Gault, B.; Raabe, D.; Skokov, K.; et al. Nanocrystalline Sm-based 1: 12 magnets. Acta Mater. 2020, 200, 652–658. [Google Scholar] [CrossRef]
Sample | Fe/(wt.%) | SmCo5/(wt.%) | Hc/(Oe) | Ms/(emu g−1) | Mr/(emu g−1) |
---|---|---|---|---|---|
un-milled3 | 26 | 74 | −1033 | 106 | 43.2 |
BM3 | 26 | 74 | −1184 | 125 | 36.4 |
BM + HPT1 | 66 | 34 | −274 | 196 | 5.4 |
BM + HPT2 | 43 | 57 | −686 | 172 | 10.2 |
BM + HPT3 | 26 | 74 | −3526 | 128 | 38.0 |
rad BM + HPT3 | 26 | 74 | −1472 | 128 | 28.9 |
tang BM + HPT3 | 26 | 74 | −1434 | 129 | 36.5 |
HPT1 | 66 | 34 | −887 | 172 | 14.1 |
HPT2 | 43 | 57 | −2366 | 150 | 30.8 |
HPT3 | 26 | 74 | −5264 | 122 | 43.2 |
rad HPT3 | 26 | 74 | −1192 | 120 | 26.3 |
tang HPT3 | 26 | 74 | −1903 | 120 | 35.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weissitsch, L.; Stückler, M.; Wurster, S.; Todt, J.; Knoll, P.; Krenn, H.; Pippan, R.; Bachmaier, A. Manufacturing of Textured Bulk Fe-SmCo5 Magnets by Severe Plastic Deformation. Nanomaterials 2022, 12, 963. https://doi.org/10.3390/nano12060963
Weissitsch L, Stückler M, Wurster S, Todt J, Knoll P, Krenn H, Pippan R, Bachmaier A. Manufacturing of Textured Bulk Fe-SmCo5 Magnets by Severe Plastic Deformation. Nanomaterials. 2022; 12(6):963. https://doi.org/10.3390/nano12060963
Chicago/Turabian StyleWeissitsch, Lukas, Martin Stückler, Stefan Wurster, Juraj Todt, Peter Knoll, Heinz Krenn, Reinhard Pippan, and Andrea Bachmaier. 2022. "Manufacturing of Textured Bulk Fe-SmCo5 Magnets by Severe Plastic Deformation" Nanomaterials 12, no. 6: 963. https://doi.org/10.3390/nano12060963
APA StyleWeissitsch, L., Stückler, M., Wurster, S., Todt, J., Knoll, P., Krenn, H., Pippan, R., & Bachmaier, A. (2022). Manufacturing of Textured Bulk Fe-SmCo5 Magnets by Severe Plastic Deformation. Nanomaterials, 12(6), 963. https://doi.org/10.3390/nano12060963