Effects of Liquid Phase Nano Titanium Dioxide (TiO2) on Seed Germination and Seedling Growth of Camphor Tree
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Bulk and Rod-like TiO2 Nanoparticles
2.2. Test on Camphor Seed Germination
2.3. Determination of Seed Germination Index and Morphological Index
2.4. Determination of Physiological Indexes of Seedling
3. Results
3.1. XRD and SEM Characterization of Nano-TiO2 with Different Morphologies
3.2. Germination Rate, Germination Potential, Germination Index and Vigor Index of Camphor Seed Treated with Nano-TiO2 Solutions with Different Morphologies
3.3. Fresh Weight, Root Length, Seedling Height, CAT, SOD, POD Activity and MDA Content of Seedlings in Nano-TiO2 Solution with Different Morphologies
3.4. Fresh Weight, Root Length and Seedling Height of Seedlings Treated with Different Concentrations of TiO2—Rod Solution
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Rohadi, D.; Setyawati, T.; Maryani, R.; Riwukaho, M.; Gilmour, D.; Boroh, P.; Septiani, Y.; Lukas, E. Strategies for Sustaining Sandalwood Resources in East Nusa Tenggara Indonesia; IUFRO Headquarters: Vienna, Austria, 2012. [Google Scholar]
- Zhou, Y.; Yan, W. Conservation and applications of camphor tree (Cinnamomum camphora) in China: Ethnobotany and genetic resources. Genet. Resour. Crop Evol. 2015, 63, 1049–1061. [Google Scholar] [CrossRef]
- Fu, J.; Wang, B.; Gong, D.; Zeng, C.; Jiang, Y.; Zeng, Z. Camphor Tree Seed Kernel Oil Reduces Body Fat Deposition and Improves Blood Lipids in Rats. J. Food Sci. 2015, 80, H1912–H1917. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Dai, X.; Liu, G.; Zhang, J.; Ning, G.; Bao, M. Cyclic secondary somatic embryogenesis and efficient plant regeneration in camphor tree (Cinnamomum camphora L.). Vitr. Cell. Dev. Biol. Plant 2010, 46, 117–125. [Google Scholar] [CrossRef]
- Haider, A.J.; Anbari, R.H.A.; Kadhim, G.R.; Salame, C.-T. Exploring potential Environmental applications of TiO2 Nanoparticles. Energy Procedia 2017, 119, 332–345. [Google Scholar] [CrossRef]
- Ni, M.; Li, F.; Wang, B.; Xu, K.; Zhang, H.; Hu, J.; Tian, J.; Shen, W.; Li, B. Effect of TiO2 Nanoparticles on the Reproduction of Silkworm. Biol. Trace Element Res. 2014, 164, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Saleem, H.; Zaidi, S.J. Recent Developments in the Application of Nanomaterials in Agroecosystems. Nanomaterials 2020, 10, 2411. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, M.R.; Giorgetti, L.; Geri, C.; Cremonini, R. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J. Nanopart. Res. 2010, 13, 2443–2449. [Google Scholar] [CrossRef]
- Mushtaq, Y.K. Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J. Environ. Sci. Health Part A 2011, 46, 1732–1735. [Google Scholar] [CrossRef]
- García-Sánchez, S.; Gala, M.; Žoldák, G. Nanoimpact in Plants: Lessons from the Transcriptome. Plants 2021, 10, 751. [Google Scholar] [CrossRef]
- Vijayalakshmi, R.; Rajendran, V. Synthesis and characterization of nano-TiO2 via different methods. Arch. Appl. Sci. Res. 2012, 4, 1183–1190. [Google Scholar]
- Danish, R.; Ahmed, F.; Arshi, N.; Anwar, M.; Koo, B.H. Facile synthesis of single-crystalline rutile TiO2 nano-rods by solution method. Trans. Nonferrous Met. Soc. China 2014, 24, s152–s156. [Google Scholar] [CrossRef]
- Shao, C.; Wang, D.; Tang, X.; Zhao, L.; Li, Y. Stimulating effects of magnetized arc plasma of different intensities on the germination of old spinach seeds. Math. Comput. Model. 2013, 58, 814–818. [Google Scholar] [CrossRef]
- Liu, W.; Yu, K.; He, T.; Li, F.; Zhang, D.; Liu, J. The Low Temperature Induced Physiological Responses of Avena nuda L., a Cold-Tolerant Plant Species. Sci. World J. 2013, 2013, 658793. [Google Scholar]
- Li, B.; Wang, X.; Yan, M.; Li, L. Preparation and characterization of nano-TiO2 powder. Mater. Chem. Phys. 2003, 78, 184–188. [Google Scholar] [CrossRef]
- Feizi, H.; Moghaddam, P.R.; Shahtahmassebi, N.; Fotovat, A. Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biol. Trace Element Res. 2011, 146, 101–106. [Google Scholar] [CrossRef]
- Zheng, L.; Hong, F.; Lu, S.; Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 2005, 104, 83–91. [Google Scholar] [CrossRef]
- Monica, R.C.; Cremonini, R. Nanoparticles and higher plants. Caryologia 2009, 62, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Hruby, M.; Cigler, P.; Kuzel, S. Contribution to understanding the mechanism of titanium action in plant. J. Plant Nutr. 2002, 25, 577–598. [Google Scholar] [CrossRef]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.S.; Tian, S.P.; Xu, Y. Effects of high oxygen concentration on pro- and anti-oxidant enzymes in peach fruits during postharvest periods. Food Chem. 2005, 91, 99–104. [Google Scholar] [CrossRef]
- Hong, F.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005, 105, 269–279. [Google Scholar] [CrossRef]
- Zhang, J.; Kirkham, M. Drought-Stress-Induced Changes in Activities of Superoxide Dismutase, Catalase, and Peroxidase in Wheat Species. Plant Cell Physiol. 1994, 35, 785–791. [Google Scholar] [CrossRef]
- Li, J.; Guo, L.; Cui, H.; Cui, B.; Liu, G. Research Progress on Uptake and Transport of Nanopesticides in Plants. Chin. Bull. Bot. 2020, 55, 513–528. [Google Scholar]
Solution | Fresh Weight | Root Length | Seedling Height | CTA | SOD | POD | MDA |
---|---|---|---|---|---|---|---|
mg | cm | cm | U/(g·min) | U/g | U/(g·min) | umoL/g | |
Blank sample | 35.4 ± 2.3 | 1.8 ± 0.3 | 2.8 ± 0.4 | 5.2 ± 1.0 | 78.6 ± 12.2 | 48.6 ± 6.1 | 4.3 ± 0.8 |
TiO2-bulk | 48.1 ± 4.2 | 4.2 ± 0.7 | 2.9 ± 0.3 | 11.3 ± 2.1 | 300.0 ± 42.5 | 69.7 ± 9.5 | 2.5 ± 0.4 |
TiO2-rod | 58.7 ± 6.0 | 5.5 ± 0.9 | 2.8 ± 0.5 | 14.7 ± 2.4 | 393 ± 40.1 | 88.5 ± 11.8 | 2.1 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhang, L.; Liu, Y.; She, J. Effects of Liquid Phase Nano Titanium Dioxide (TiO2) on Seed Germination and Seedling Growth of Camphor Tree. Nanomaterials 2022, 12, 1047. https://doi.org/10.3390/nano12071047
Zhou Y, Zhang L, Liu Y, She J. Effects of Liquid Phase Nano Titanium Dioxide (TiO2) on Seed Germination and Seedling Growth of Camphor Tree. Nanomaterials. 2022; 12(7):1047. https://doi.org/10.3390/nano12071047
Chicago/Turabian StyleZhou, You, Lei Zhang, Yaodi Liu, and Jiyun She. 2022. "Effects of Liquid Phase Nano Titanium Dioxide (TiO2) on Seed Germination and Seedling Growth of Camphor Tree" Nanomaterials 12, no. 7: 1047. https://doi.org/10.3390/nano12071047
APA StyleZhou, Y., Zhang, L., Liu, Y., & She, J. (2022). Effects of Liquid Phase Nano Titanium Dioxide (TiO2) on Seed Germination and Seedling Growth of Camphor Tree. Nanomaterials, 12(7), 1047. https://doi.org/10.3390/nano12071047