Comparing Thickness and Doping-Induced Effects on the Normal States of Infinite-Layer Electron-Doped Cuprates: Is There Anything to Learn?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schlom, D.G.; Haeni, J.H.; Lettieri, J.; Theis, C.D.; Tian, W.; Jiang, J.C.; Pan, X.Q. Oxide nano-engineering using MBE. Mater. Sci. Eng. B 2001, 87, 282–291. [Google Scholar] [CrossRef]
- Barone, M.R.; Dawley, N.M.; Nair, H.P.; Goodge, B.H.; Holtz, M.E.; Soukiassian, A.; Fleck, E.E.; Lee, K.; Jia, Y.; Heeg, T.R.; et al. Improved control of atomic layering in perovskite-related homologous series. APL Mater. 2021, 9, 021118. [Google Scholar] [CrossRef]
- Biegalski, M.D.; Fong, D.D.; Eastman, J.A.; Fuoss, P.H.; Streiffer, S.K.; Heeg, T.; Schubert, J.; Tian, W.; Nelson, C.T.; Pan, X.Q.; et al. Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3. J. Appl. Phys. 2008, 104, 114109. [Google Scholar] [CrossRef] [Green Version]
- Jalan, B.; Engel-Herbert, R.; Wright, N.J.; Stemmer, S. Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach. J. Vac. Sci. Technol. A Vacuum Surf. Films 2009, 27, 461–464. [Google Scholar] [CrossRef]
- Petrov, A.Y.; Aruta, C.; Mercone, S.; Adamo, C.; Alessandri, I.; Maritato, L. Room temperature metal-insulator transition in as grown (La1−xSrx)yMnO3 thin films deposited by molecular beam epitaxy. Eur. Phys. J. B 2004, 40, 11–17. [Google Scholar] [CrossRef]
- Zhai, X.F.; Mohapatra, C.S.; Shah, A.B.; Zuo, J.-M.; Eckstein, J.N. New Optical Absorption Bands in Atomic-Layer Superlattices. Adv. Mater. 2010, 22, 1136–1139. [Google Scholar] [CrossRef]
- Galdi, A.; Aruta, C.; Orgiani, P.; Adamo, C.; Bisogni, V.; Brookes, N.B.; Ghiringhelli, G.; Schlom, D.G.; Thakur, P.K.; Maritato, L. Electronic band redistribution probed by oxygen absorption spectra of (SrMnO3)n(LaMnO3)2nsuperlattices. Phys. Rev. B 2012, 85, 125129. [Google Scholar] [CrossRef]
- Monkman, E.J.; Adamo, C.; Mundy, J.A.; Shai, D.E.; Harter, J.W.; Shen, D.W.; Burganov, B.; Muller, D.A.; Schlom, D.G.; Shen, K.M. Quantum many-body interactions in digital oxide superlattices. Nat. Mater. 2012, 11, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Perucchi, A.; Baldassarre, L.; Nucara, A.; Calvani, P.; Adamo, C.; Schlom, D.G.; Orgiani, P.; Maritato, L.; Lupi, S. Optical Properties of (SrMnO3)n/(LaMnO3)2n Superlattices: An Insulator-to-Metal Transition Observed in the Absence of Disorder. Nano Lett. 2010, 10, 4819–4823. [Google Scholar] [CrossRef] [Green Version]
- Moetakef, P.; Jackson, C.A.; Hwang, J.; Balents, L.; Allen, S.J.; Stemmer, S. Toward an artificial Mott insulator: Correlations in confined high-density electron liquids in SrTiO3. Phys. Rev. B 2012, 86, 201102. [Google Scholar] [CrossRef] [Green Version]
- Nemsak, S.; Conti, G.; Palsson, G.K.; Conlon, C.; Cho, S.; Rault, J.E.; Avila, J.; Asensio, M.-C.; Jackson, C.A.; Moetakef, P.; et al. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO3 embedded in GdTiO3. Appl. Phys. Lett. 2015, 107, 231602. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.A.; Zhang, J.Y.; Freeze, C.R.; Stemmer, S. Quantum critical behaviour in confined SrTiO3 quantum wells embedded in antiferromagnetic SmTiO3. Nat. Commun. 2014, 5, 4258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimatsu, K.; Horiba, K.; Kumigashira, H.; Yoshida, T.; Fujimori, A.; Oshima, M. Metallic Quantum Well States in Artificial Structures of Strongly Correlated Oxide. Science 2011, 333, 319–322. [Google Scholar] [CrossRef]
- Yukawa, R.; Kobayashi, M.; Kanda, T.; Shiga, D.; Yoshimatsu, K.; Ishibashi, S.; Minohara, M.; Kitamura, M.; Horiba, K.; Santander-Syro, A.F.; et al. Resonant tunneling driven metal-insulator transition in double quantum-well structures of strongly correlated oxide. Nat. Commun. 2021, 12, 7070. [Google Scholar] [CrossRef]
- Galdi, A.; Sacco, C.; Orgiani, P.; Romeo, F.; Maritato, L. Growth and characterization of charge carrier spatially confined SrMnO3/La0.7Sr0.3MnO3/SrMnO3 trilayers. J. Cryst. Growth 2017, 459, 56–60. [Google Scholar] [CrossRef]
- Søndenå, R.; Ravindran, P.; Stølen, S.; Grande, T.; Hanfland, M. Electronic structure and magnetic properties of cubic and hexagonalSrMnO3. Phys. Rev. B 2006, 74, 144102. [Google Scholar] [CrossRef]
- Popović, Z.V.; Ivanov, V.A.; Konstantinović, M.J.; Cantarero, A.; Martínez-Pastor, J.; Olguín, D.; Alonso, M.I.; Garriga, M.; Khuong, O.P.; Vietkin, A.; et al. Optical studies of gap, hopping energies, and the Anderson-Hubbard parameter in the zigzag-chain compoundSrCuO2. Phys. Rev. B 2001, 63, 165105. [Google Scholar] [CrossRef] [Green Version]
- Uecker, R.; Velickov, B.; Klimm, D.; Bertram, R.; Bernhagen, M.; Rabe, M.; Albrecht, M.; Fornari, R.; Schlom, D. Properties of rare-earth scandate single crystals (Re = Nd − Dy). J. Cryst. Growth 2008, 310, 2649–2658. [Google Scholar] [CrossRef]
- Hiroi, Z.; Azuma, M.; Takano, M.; Bando, Y. A new homologous series Srn−1Cun+1O2n found in the SrO-CuO system treated under high pressure. J. Solid State Chem. 1991, 95, 230–238. [Google Scholar] [CrossRef]
- Jorgensen, J.D.; Radaelli, P.G.; Hinks, D.G.; Wagner, J.L.; Kikkawa, S.; Er, G.; Kanamaru, F. Structure of superconductingSr0.9La0.1CuO2(Tc = 42 K) from neutron powder diffraction. Phys. Rev. B 1993, 47, 14654–14656. [Google Scholar] [CrossRef]
- Sacco, C.; Galdi, A.; Romeo, F.; Coppola, N.; Orgiani, P.; Wei, H.; Goodge, B.H.; Kourkoutis, L.; Shen, K.; Schlom, D.G.; et al. Carrier confinement effects observed in the normal-state electrical transport of electron-doped cuprate trilayers. J. Phys. D Appl. Phys. 2019, 52, 135303. [Google Scholar] [CrossRef]
- Maritato, L.; Galdi, A.; Orgiani, P.; Harter, J.W.; Schubert, J.; Shen, K.M.; Schlom, D.G. Layer-by-layer shuttered molecular-beam epitaxial growth of superconducting Sr1–xLaxCuO2 thin films. J. Appl. Phys. 2013, 113, 053911. [Google Scholar] [CrossRef] [Green Version]
- Karimoto, S.; Naito, M. Electron-doped infinite-layer thin films with TCzero = 41 K grown on DyScO3 substrates. Phys. C: Supercond. 2004, 412–414, 1349–1353. [Google Scholar] [CrossRef]
- Harter, J.W.; Maritato, L.; Shai, D.E.; Monkman, E.J.; Nie, Y.; Schlom, D.G.; Shen, K.M. Doping evolution and polar surface reconstruction of the infinite-layer cuprateSr1−xLaxCuO2. Phys. Rev. B 2015, 92, 035149. [Google Scholar] [CrossRef] [Green Version]
- Galdi, A.; Orgiani, P.; Sacco, C.; Gobaut, B.; Torelli, P.; Aruta, C.; Brookes, N.B.; Minola, M.; Harter, J.W.; Shen, K.M.; et al. X-ray absorption spectroscopy study of annealing process on Sr1–xLaxCuO2 electron-doped cuprate thin films. J. Appl. Phys. 2018, 123, 123901. [Google Scholar] [CrossRef]
- Sacco, C.; Galdi, A.; Orgiani, P.; Coppola, N.; I Wei, H.; Arpaia, R.; Charpentier, S.; Lombardi, F.; Goodge, B.; Kourkoutis, L.; et al. Low temperature hidden Fermi-liquid charge transport in under doped La x Sr1-x CuO2 infinite layer electron-doped thin films. J. Phys. Condens. Matter 2019, 31, 445601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Pauw, L.J. A Methos of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res. Rep. 1991, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tabis, W.; Yu, G.; Barišić, N.; Greven, M. Hidden Fermi-liquid Charge Transport in the Antiferromagnetic Phase of the Electron-Doped Cuprate Superconductors. Phys. Rev. Lett. 2016, 117, 197001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barišić, N.; Chan, M.K.; Li, Y.; Yu, G.; Zhao, X.; Dressel, M.; Smontara, A.; Greven, M. Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors. Proc. Natl. Acad. Sci. USA 2013, 110, 12235–12240. [Google Scholar] [CrossRef] [Green Version]
- Arpaia, R.; Andersson, E.; Trabaldo, E.; Bauch, T.; Lombardi, F. Probing the phase diagram of cuprates with YBa2Cu3O7−δ thin films and nanowires. Phys. Rev. Mater. 2018, 2, 024804. [Google Scholar] [CrossRef] [Green Version]
- Gurvitch, M.; Fiory, A.T. Resistivity of La1.825Sr0.175CuO4 and YBa2Cu3O7 to 1100 K: Absence of saturation and its implications. Phys. Rev. Lett. 1987, 59, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Balédent, V.; Barišić, N.; Cho, Y.C.; Fauque, B.; Sidis, Y.; Yu, G.; Zhao, X.; Bourges, P.; Greven, M. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ. Nature 2008, 455, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Shekhter, A.; Ramshaw, B.J.; Liang, R.; Hardy, W.N.; Bonn, D.A.; Balakirev, F.; Mcdonald, R.; Betts, J.B.; Riggs, S.C.; Migliori, A. Bounding the pseudogap with a line of phase transitions in YBa2Cu3O6+δ. Nature 2013, 498, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Keimer, B.; Kivelson, S.A.; Norman, M.R.; Uchida, S.; Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 2015, 518, 179–186. [Google Scholar] [CrossRef]
- Simonin, J. Surface term in the superconductive Ginzburg-Landau free energy: Application to thin films. Phys. Rev. B 1986, 33, 7830–7832. [Google Scholar] [CrossRef] [PubMed]
- Harter, J.W.; Maritato, L.; Shai, D.E.; Monkman, E.J.; Nie, Y.F.; Schlom, D.G.; Shen, A.K.M. Nodeless Superconducting Phase Arising from a Strong (π,π) Antiferromagnetic Phase in the Infinite-Layer Electron-DopedSr1−xLaxCuO2Compound. Phys. Rev. Lett. 2012, 109, 267001. [Google Scholar] [CrossRef] [Green Version]
Tmin (K) | TConset (K) | T* (K) | T** (K) | ||
---|---|---|---|---|---|
Doping level | |||||
6.1% | 69 | 22 | 213 | 203 | 28.74 |
6.2% | 64 | 23 | 246 | 215 | 40.35 |
6.9% | 69 | 27 | 231 | 191 | 33.35 |
7.3% | 65.5 | 29 | 221 | 170 | 34.268 |
8.5% | - | 33 | 194 | 160 | 36.47 |
SLCO Thickness | |||||
5 u.c. | 81 | 23 | 254 | 207 | 47.9 |
10 u.c. | 64 | 30 | 214 | 123 | 103.2 |
15 u.c. | 48 | 30.5 | 241 | 184 | 67.4 |
20 u.c. | 45 | 32 | 230 | 156 | 32.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacco, C.; Galdi, A.; Romeo, F.; Coppola, N.; Orgiani, P.; Wei, H.I.; Shen, K.M.; Schlom, D.G.; Maritato, L. Comparing Thickness and Doping-Induced Effects on the Normal States of Infinite-Layer Electron-Doped Cuprates: Is There Anything to Learn? Nanomaterials 2022, 12, 1092. https://doi.org/10.3390/nano12071092
Sacco C, Galdi A, Romeo F, Coppola N, Orgiani P, Wei HI, Shen KM, Schlom DG, Maritato L. Comparing Thickness and Doping-Induced Effects on the Normal States of Infinite-Layer Electron-Doped Cuprates: Is There Anything to Learn? Nanomaterials. 2022; 12(7):1092. https://doi.org/10.3390/nano12071092
Chicago/Turabian StyleSacco, Chiara, Alice Galdi, Francesco Romeo, Nunzia Coppola, Pasquale Orgiani, Haofei I. Wei, Kyle M. Shen, Darrell G. Schlom, and Luigi Maritato. 2022. "Comparing Thickness and Doping-Induced Effects on the Normal States of Infinite-Layer Electron-Doped Cuprates: Is There Anything to Learn?" Nanomaterials 12, no. 7: 1092. https://doi.org/10.3390/nano12071092
APA StyleSacco, C., Galdi, A., Romeo, F., Coppola, N., Orgiani, P., Wei, H. I., Shen, K. M., Schlom, D. G., & Maritato, L. (2022). Comparing Thickness and Doping-Induced Effects on the Normal States of Infinite-Layer Electron-Doped Cuprates: Is There Anything to Learn? Nanomaterials, 12(7), 1092. https://doi.org/10.3390/nano12071092