Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimizu, K.; Kawabe, R.; Hojo, H.; Shimizu, H.; Yamamoto, H.; Katsumata, M.; Shigematsu, K.; Mibu, K.; Kumagai, Y.; Oba, F.; et al. Direct Observation of Magnetization Reversal by Electric Field at Room Temperature in Co-Substituted Bismuth Ferrite Thin Film. Nano Lett. 2019, 19, 1767–1773. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Hong, H.J.; Jo, Y.-R.; Jung, S.-G.; Kim, S.; Kim, S.; Lee, J.; Choi, H.; Yoon, H.; Kim, S.-Y.; et al. Reversible magnetoelectric switching in multiferroic three-dimensional nanocup heterostructure films. NPG Asia Mater. 2019, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Rossell, M.D.; Erni, R.; Prange, M.P.; Idrobo, J.-C.; Luo, W.; Zeches, R.J.; Pantelides, S.T.; Ramesh, R. Atomic Structure of Highly Strained BiFeO3Thin Films. Phys. Rev. Lett. 2012, 108, 047601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markelova, M.; Nygaard, R.; Tsymbarenko, D.; Shurkina, A.; Abramov, A.; Amelichev, V.; Makarevich, A.; Vasiliev, A.; Kaul, A. Multiferroic h-LuFeO 3 Thin Films on (111) and (100) Surfaces of YSZ Substrates: An Experimental and Theoretical Study. ACS Appl. Electron. Mater. 2021, 3, 1015–1022. [Google Scholar] [CrossRef]
- Goswami, S.; Dey, K.; Chakraborty, S.; Giri, S.; Chowdhury, U.; Bhattacharya, D. Large Magnetoelectric Coupling in the Thin Film of Multiferroic CuO. ACS Omega 2020, 5, 22883–22890. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Shankar, S.; Kumar, A.; Anshul, A.; Jayasimhadri, M.; Thakur, O.P. Progress in multiferroic and magnetoelectric materials: Applications, opportunities and challenges. J. Mater. Sci. Mater. Electron. 2020, 31, 19487–19510. [Google Scholar] [CrossRef]
- Hojo, H.; Kawabe, R.; Shimizu, K.; Yamamoto, H.; Mibu, K.; Samanta, K.; Saha-Dasgupta, T.; Azuma, M. Ferromagnetism at Room Temperature Induced by Spin Structure Change in BiFe1−xCoxO3 Thin Films. Adv. Mater. 2017, 29, 1603131. [Google Scholar] [CrossRef]
- Jana, B.; Ghosh, K.; Rudrapal, K.; Gaur, P.; Shihabudeen, P.K.; Roy Chaudhuri, A. Recent Progress in Flexible Multiferroics. Front. Phys. 2022, 9, 810. [Google Scholar] [CrossRef]
- Liu, B.; Yang, C.; Li, X.; Wang, C.; Liu, G.; Yang, H.; Wang, Y. Origin of antipolar clusters in BiFeO3 epitaxial thin films. J. Eur. Ceram. Soc. 2018, 38, 621–627. [Google Scholar] [CrossRef]
- Lu, Q.; Choi, K.; Nam, J.-D.; Choi, H.J. Magnetic Polymer Composite Particles: Design and Magnetorheology. Polymers 2021, 13, 512. [Google Scholar] [CrossRef]
- Sorokin, V.V.; Stepanov, G.V.; Shamonin, M.; Monkman, G.J.; Khokhlov, A.R.; Kramarenko, E.Y. Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler composition, strain amplitude and magnetic field. Polymer 2015, 76, 191–202. [Google Scholar] [CrossRef]
- Kawakami, Y.; Amano, T.; Ohashi, H.; Itoh, H.; Nakamura, Y.; Kishida, H.; Sasaki, T.; Kawaguchi, G.; Yamamoto, H.M.; Yamamoto, K.; et al. Petahertz non-linear current in a centrosymmetric organic superconductor. Nat. Commun. 2020, 11, 4138. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.; Yilmaz, E. Magnetic nanoparticle-polymer hybrid materials. In Magnetic Nanoparticle-Based Hybrid Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 139–182. [Google Scholar]
- Kaspar, P.; Sobola, D.; Částková, K.; Knápek, A.; Burda, D.; Orudzhev, F.; Dallaev, R.; Tofel, P.; Trčka, T.; Grmela, L.; et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers 2020, 12, 2766. [Google Scholar] [CrossRef] [PubMed]
- Castkova, K.; Kastyl, J.; Sobola, D.; Petrus, J.; Stastna, E.; Riha, D.; Tofel, P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials 2020, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Giannelli, P.; Bulletti, A.; Capineri, L. Multifunctional Piezopolymer Film Transducer for Structural Health Monitoring Applications. IEEE Sens. J. 2017, 17, 4583–4586. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, K.; Zhang, Q.M. Direct piezoelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress. Appl. Phys. Lett. 2007, 91, 222905. [Google Scholar] [CrossRef]
- Orudzhev, F.; Ramazanov, S.; Sobola, D.; Kaspar, P.; Trčka, T.; Částková, K.; Kastyl, J.; Zvereva, I.; Wang, C.; Selimov, D.; et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy 2021, 90, 106586. [Google Scholar] [CrossRef]
- Yakuphanoglu, F.; Şenkal, B.F. Electronic and Thermoelectric Properties of Polyaniline Organic Semiconductor and Electrical Characterization of Al/PANI MIS Diode. J. Phys. Chem. C 2007, 111, 1840–1846. [Google Scholar] [CrossRef]
- Mocioiu, A.-M.; Tudor, I.A.; Mocioiu, O.C. Application of Polyaniline for Flexible Semiconductors. Coatings 2021, 11, 49. [Google Scholar] [CrossRef]
- Wang, N.; Luo, X.; Han, L.; Zhang, Z.; Zhang, R.; Olin, H.; Yang, Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Lett. 2020, 12, 81. [Google Scholar] [CrossRef]
- Alikhanov, N.M.-R.; Rabadanov, M.K.; Orudzhev, F.F.; Gadzhimagomedov, S.K.; Emirov, R.M.; Sadykov, S.A.; Kallaev, S.N.; Ramazanov, S.M.; Abdulvakhidov, K.G.; Sobola, D. Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3. J. Mater. Sci. Mater. Electron. 2021, 32, 13323–13335. [Google Scholar] [CrossRef]
- Park, T.-J.; Papaefthymiou, G.C.; Viescas, A.J.; Moodenbaugh, A.R.; Wong, S.S. Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO 3 Nanoparticles. Nano Lett. 2007, 7, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Chandra Das, S.; Majumdar, A.; Katiyal, S.; Poojitha, B.; Saha, S.; Shripathi, T. Phase pure epitaxial growth of BiFeO3 films: An effect of oxygen partial pressure. Solid State Commun. 2017, 264, 10–15. [Google Scholar] [CrossRef]
- Sobola, D.; Ramazanov, S.; Konečný, M.; Orudzhev, F.; Kaspar, P.; Papež, N.; Knápek, A.; Potoček, M. Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. Materials 2020, 13, 2402. [Google Scholar] [CrossRef]
- Signore, M.A.; Taurino, A.; Catalano, M.; Kim, M.; Che, Z.; Quaranta, F.; Siciliano, P. Growth assessment of (002)-oriented AlN thin films on Ti bottom electrode deposited on silicon and kapton substrates. Mater. Des. 2017, 119, 151–158. [Google Scholar] [CrossRef]
- Zhai, D.; Yang, Y.; Geng, Z.; Cui, B.; Zhao, R. A High-selectivity THz Filter Based on A Flexible Polyimide Film. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 719–724. [Google Scholar] [CrossRef]
- Bretos, I.; Jiménez, R.; Ricote, J.; Sirera, R.; Calzada, M.L. Photoferroelectric Thin Films for Flexible Systems by a Three-in-One Solution-Based Approach. Adv. Funct. Mater. 2020, 30, 2001897. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.L.; Wang, Z. In situ tuning of crystallization pathways by electron beam irradiation and heating in amorphous bismuth ferrite films. RSC Adv. 2018, 8, 23522–23528. [Google Scholar] [CrossRef] [Green Version]
- Almjasheva, O.V.; Popkov, V.I.; Proskurina, O.V.; Gusarov, V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosyst. Phys. Chem. Math. 2022, 13, 164–180. [Google Scholar] [CrossRef]
- Gridnev, S.A.; Kalinin, Y.E.; Dybov, V.A.; Popov, I.I.; Kashirin, M.A.; Tolstykh, N.A. Internal friction in thin-film ferrite bismuth with an amorphous structure. J. Alloys Compd. 2022, 918, 165610. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Marchand, B.; Jalkanen, P.; Tuboltsev, V.; Vehkamäki, M.; Puttaswamy, M.; Kemell, M.; Mizohata, K.; Hatanpää, T.; Savin, A.; Räisänen, J.; et al. Electric and Magnetic Properties of ALD-Grown BiFeO 3 Films. J. Phys. Chem. C 2016, 120, 7313–7322. [Google Scholar] [CrossRef]
- Ramazanov, S.; Sobola, D.; Orudzhev, F.; Knápek, A.; Polčák, J.; Potoček, M.; Kaspar, P.; Dallaev, R. Surface modification and enhancement of ferromagnetism in BiFeO3 nanofilms deposited on HOPG. Nanomaterials 2020, 10, 1990. [Google Scholar] [CrossRef] [PubMed]
- Orudzhev, F.; Ramazanov, S.; Sobola, D.; Isaev, A.; Wang, C.; Magomedova, A.; Kadiev, M.; Kaviyarasu, K. Atomic layer deposition of mixed-layered aurivillius phase on TiO2 nanotubes: Synthesis, characterization and photoelectrocatalytic properties. Nanomaterials 2020, 10, 2183. [Google Scholar] [CrossRef] [PubMed]
- Orudzhev, F.F.; Ramazanov, S.M.; Isaev, A.B.; Alikhanov, N.M.-R.; Sobola, D.; Presniakov, M.Y.; Kaviyarasu, K. Self-organization of layered perovskites on TiO2 nanotubes surface by atomic layer deposition. Mater. Today Proc. 2021, 36, 364–367. [Google Scholar] [CrossRef]
- Knápek, A.; Dallaev, R.; Burda, D.; Sobola, D.; Allaham, M.M.; Horáček, M.; Kaspar, P.; Matějka, M.; Mousa, M.S. Field Emission Properties of Polymer Graphite Tips Prepared by Membrane Electrochemical Etching. Nanomaterials 2020, 10, 1294. [Google Scholar] [CrossRef]
- Knápek, A.; Sýkora, J.; Chlumská, J.; Sobola, D. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes. Microelectron. Eng. 2017, 173, 42–47. [Google Scholar] [CrossRef]
- Tuttle, J.; DiPirro, M.; Canavan, E.; Hait, T.; Balachandran, U.; Amm, K.; Evans, D.; Gregory, E.; Lee, P.; Osofsky, M.; et al. Thermal properties of double-aluminized kapton at low temperatures. AIP Conf. Proc. 2008, 986, 34–41. [Google Scholar]
- Ramazanov, S.; Sobola, D.; Ţălu, Ş.; Orudzev, F.; Arman, A.; Kaspar, P.; Dallaev, R.; Ramazanov, G. Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3. Microsc. Res. Tech. 2022, 85, 1300–1310. [Google Scholar] [CrossRef]
- Perla, V.K.; Ghosh, S.K.; Mallick, K. Nonvolatile switchable resistive behaviour via organic–inorganic hybrid interactions. J. Mater. Sci. 2019, 54, 2324–2332. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Stach, S.; Ramazanov, S.; Sobola, D.; Ramazanov, G. Multifractal characterization of epitaxial silicon carbide on silicon. Mater. Sci. 2017, 35, 539–547. [Google Scholar] [CrossRef]
- Zhang, Q.; Rana, A.; Liu, X.; Valanoor, N. Electrode Dependence of Local Electrical Properties of Chemical-Solution-Deposition-Derived BiFeO 3 Thin Films. ACS Appl. Electron. Mater. 2019, 1, 154–162. [Google Scholar] [CrossRef]
- Chisca, S.; Sava, I.; Musteata, V.-E.; Bruma, M. Dielectric and conduction properties of polyimide films. In Proceedings of the CAS 2011 Proceedings (2011 International Semiconductor Conference), Sinaia, Romania, 17–19 October 2011; pp. 253–256. [Google Scholar]
- He, J.-J.; Yang, H.-X.; Zheng, F.; Yang, S.-Y. Dielectric Properties of Fluorinated Aromatic Polyimide Films with Rigid Polymer Backbones. Polymers 2022, 14, 649. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, Z.; Wei, R.; Huang, Y.; Wang, L.; Leng, J.; Xiang, P.; Lan, M. First principles study of the magnetic properties and charge transfer of Ni-doped BiFeO3. J. Magn. Magn. Mater. 2018, 449, 10–16. [Google Scholar] [CrossRef]
- Yoo, S.-J.; Kim, J.-J. Charge Transport in Electrically Doped Amorphous Organic Semiconductors. Macromol. Rapid Commun. 2015, 36, 984–1000. [Google Scholar] [CrossRef]
- Pyatakov, A.P.; Sergeev, A.S.; Nikolaeva, E.P.; Kosykh, T.B.; Nikolaev, A.V.; Zvezdin, K.A.; Zvezdin, A.K. Micromagnetism and topological defects in magnetoelectric media. Physics 2015, 58, 981–992. [Google Scholar] [CrossRef]
- Orudzhev, F.F.; Ramazanov, S.M.; Sobola, D.; Alikhanov, N.M.R.; Dallaev, R.S. Property Management of BiFeO3-Based Multifunctional Perovskite Nanomaterials: Nanoparticles, Ceramics, and Thin Films. In Nanomaterials for Energy Conversion, Biomedical and Environmental Applications; Kasinathan, K., Elshikh, M.S., Al Farraj, D.A.A., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Yastrebov, S.G.; Lomanova, N.A. Specific Features in the Interaction between BiFeO3 Nanoclusters Synthesized by Solution Combustion. Tech. Phys. Lett. 2021, 47, 1–4. [Google Scholar] [CrossRef]
Sample | Number of Cycles | Film Thickness |
---|---|---|
Sample 1 | 400 | 42 |
Sample 2 | 600 | 77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramazanov, S.; Sobola, D.; Gajiev, G.; Orudzhev, F.; Kaspar, P.; Gummetov, A. Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. Nanomaterials 2023, 13, 139. https://doi.org/10.3390/nano13010139
Ramazanov S, Sobola D, Gajiev G, Orudzhev F, Kaspar P, Gummetov A. Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. Nanomaterials. 2023; 13(1):139. https://doi.org/10.3390/nano13010139
Chicago/Turabian StyleRamazanov, Shikhgasan, Dinara Sobola, Gaji Gajiev, Farid Orudzhev, Pavel Kaspar, and Adil Gummetov. 2023. "Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition" Nanomaterials 13, no. 1: 139. https://doi.org/10.3390/nano13010139
APA StyleRamazanov, S., Sobola, D., Gajiev, G., Orudzhev, F., Kaspar, P., & Gummetov, A. (2023). Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. Nanomaterials, 13(1), 139. https://doi.org/10.3390/nano13010139