Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (555)

Search Parameters:
Keywords = BiFeO3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 9907 KB  
Article
The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation
by Jingfei Luan, Anan Liu, Liang Hao, Boyang Liu and Hengchang Zeng
Nanomaterials 2025, 15(16), 1290; https://doi.org/10.3390/nano15161290 - 21 Aug 2025
Viewed by 324
Abstract
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5 [...] Read more.
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5Yb0.5O1.5 heterojunction photocatalyst (HBHP) was fabricated using a solvothermal method. The crystal structure, surface morphology, and physicochemical properties of the samples were characterized using XRD, a micro-Raman spectrometer, FT-IR, XPS, ultraviolet photoelectron spectroscopy (UPS), TEM, and SEM. The results showed that Ho2FeSbO7 possessed a pyrochlore-type cubic crystal structure (space group Fd-3m, No. 227), while Bi0.5Yb0.5O1.5 featured a fluorite-type cubic structure (space group Fm-3m, No. 225). The results of the degradation experiment indicated that when HBHP, Ho2FeSbO7, or Bi0.5Yb0.5O1.5 was employed as a photocatalytic nanomaterial, following 140 min of visible light irradiation, the removal efficiency of ciprofloxacin (CIP) reached 99.82%, 86.15%, or 73.86%, respectively. This finding strongly evidenced the remarkable superiority of HBHP in terms of photocatalytic performance. Compared to the individual catalyst Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, the removal efficiency of CIP by HBHP was 1.16 times, 1.36 times, or 2.52 times higher than that by Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, respectively. The radical trapping experiments indicated that in the CIP degradation process, the hydroxyl radical owned the strongest oxidation ability, followed by the superoxide anion and the photoinduced hole. These studies are of great significance for the degradation of antibiotics and environmental protection. Full article
Show Figures

Graphical abstract

16 pages, 277 KB  
Review
Manganese Nanoparticles for Heavy Metal Detection vs. Noble and Base Metal Nanoparticles; Prospects, Limitations, and Applications in Electroanalysis
by Vasiliki Keramari and Stella Girousi
Chemosensors 2025, 13(8), 313; https://doi.org/10.3390/chemosensors13080313 - 17 Aug 2025
Viewed by 521
Abstract
This review examines the emerging role of manganese-based nanoparticles (Mn-NPs) in detecting heavy metal pollutants in environmental matrices. Heavy metals such as cadmium, lead, zinc, and copper pose serious environmental and health concerns due to their tendency to persist in ecosystems and accumulate [...] Read more.
This review examines the emerging role of manganese-based nanoparticles (Mn-NPs) in detecting heavy metal pollutants in environmental matrices. Heavy metals such as cadmium, lead, zinc, and copper pose serious environmental and health concerns due to their tendency to persist in ecosystems and accumulate in living organisms. As a result, there is a growing need for reliable methods to detect and remove these pollutants. Manganese nanoparticles offer unique advantages that scientists could consider as replacing other metal nanoparticles, which may be more expensive or more toxic. The physicochemical properties of Mn-NPs—including their multiple oxidation states, magnetic susceptibility, catalytic capabilities, and semiconductor conductivity—enable the development of multi-modal sensing platforms with exceptional sensitivity and selectivity. While Mn-NPs exhibit inherently low electrical conductivity, strategies such as transition metal doping and the formation of composites with conductive materials have successfully addressed this limitation. Compared to noble metal nanoparticles (Au, Ag, Pd) and other base metal nanoparticles (Bi, Fe3O4), Mn-NPs demonstrate competitive performance without the drawbacks of high cost, complex synthesis, poor distribution control, or significant aggregation. Preliminary studies retrieved from the Scopus database highlight promising applications of manganese-based nanomaterials in electrochemical sensing of heavy metals, with recent developments showing detection limits in the sub-ppb range. Future research directions should focus on addressing challenges related to scalability, cost-effectiveness, and integration with existing water treatment infrastructure to accelerate the transition from laboratory findings to practical environmental applications. Full article
13 pages, 2972 KB  
Article
Investigation of Electrical Conduction Mechanisms in Silicone Rubber—Bismuth Ferrite Composites
by Cristian Casut, Daniel Ursu, Marinela Miclau, Iosif Malaescu and Catalin Nicolae Marin
Crystals 2025, 15(8), 721; https://doi.org/10.3390/cryst15080721 - 10 Aug 2025
Viewed by 404
Abstract
Three composite materials, made by inserting the same amount of BiFeO3/Bi25FeO40 powders (each powder having a different concentration of the secondary phase, Bi25FeO40: 10%, 20%, and 30%) into a silicone rubber (SR) matrix, were [...] Read more.
Three composite materials, made by inserting the same amount of BiFeO3/Bi25FeO40 powders (each powder having a different concentration of the secondary phase, Bi25FeO40: 10%, 20%, and 30%) into a silicone rubber (SR) matrix, were investigated to understand their electrical properties. Electrical conductivity measurements of the composite samples were carried out over a frequency range from 0.5 kHz to 2 MHz. The resulting conductivity spectra revealed two distinct regions: a low-frequency plateau corresponding to DC conductivity and a high-frequency region where AC conductivity increases with frequency. Some key electrical parameters, such as DC conductivity and band gap energy, were calculated using these measurements. An increase in Bi25FeO40 concentration resulted in a rise in DC conductivity from 5.61 × 10−5 S/m to 7.67 × 10−5 S/m across the composite samples. To gain further insight into the mechanisms of charge transport, both Jonscher’s universal response and the correlated barrier hopping (CBH) model were applied. The polaron model was also used to calculate the energy barrier for electrical conduction, but for higher temperatures (where the samples exhibit conductor behavior). The last part of the study was an aging analysis that showed a degradation of the investigated sample, as reflected by a decline in their conductive properties over time. Having no endothermic or exothermic events in the DTA curves, it is clear that the observed variation in conductive properties is not related to phase transitions, but it can be attributed to microstructural mechanisms, such as defects, microcracks, or structural disorders. These results can help in designing composite materials with desirable conductive properties by optimizing their filler concentration and processing conditions. Full article
Show Figures

Figure 1

19 pages, 13584 KB  
Article
Enhanced Diffraction and Spectroscopic Insight into Layer-Structured Bi6Fe2Ti3O18 Ceramics
by Zbigniew Pędzich, Agata Lisińska-Czekaj, Dionizy Czekaj, Agnieszka Wojteczko and Barbara Garbarz-Glos
Materials 2025, 18(15), 3690; https://doi.org/10.3390/ma18153690 - 6 Aug 2025
Viewed by 274
Abstract
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was [...] Read more.
Bi6Fe2Ti3O18 (BFTO) ceramics were synthesized via a solid-state reaction route using stoichiometric amounts of Bi2O3, TiO2, and Fe2O3 powders. A thermal analysis of the powder mixture was conducted to optimize the heat treatment parameters. Energy-dispersive X-ray spectroscopy (EDS) confirmed the conservation of the chemical composition following calcination. Final densification was achieved through hot pressing. The crystal structure of the sintered samples, examined via X-ray diffraction at room temperature, revealed a tetragonal symmetry for BFTO ceramics sintered at 850 °C. Electron backscatter diffraction (EBSD) provided detailed insight into the crystallographic orientation and microstructure. Broadband dielectric spectroscopy (BBDS) was employed to investigate the dielectric response of BFTO ceramics over a frequency range of 10 mHz to 10 MHz and a temperature range of −30 °C to +200 °C. The temperature dependence of the relative permittivity (εr) and dielectric loss tangent (tan δ) were measured within a frequency range of 100 kHz to 900 kHz and a temperature range of 25 °C to 570 °C. The impedance data obtained from the BBDS measurements were validated using the Kramers–Kronig test and modeled using the Kohlrausch–Williams–Watts (KWW) function. The stretching parameter (β) ranged from ~0.72 to 0.82 in the impedance formalism within the temperature range from 200 °C to 20 °C. Full article
Show Figures

Figure 1

9 pages, 497 KB  
Article
Ultra-Weak Photon Emission from Crown Ethers Exposed to Fenton’s Reagent Fe2+-H2O2
by Michał Nowak, Krzysztof Sasak, Anna Wlodarczyk, Izabela Grabska-Kobylecka, Agata Sarniak and Dariusz Nowak
Molecules 2025, 30(15), 3282; https://doi.org/10.3390/molecules30153282 - 5 Aug 2025
Viewed by 342
Abstract
We hypothesized that compounds containing ether linkages within their backbone structures, when exposed to hydroxyl radicals (•OH), can generate ultra-weak photon emission (UPE) as a result of the formation of triplet excited carbonyl species (3R=O*). To evaluate this hypothesis, we investigated [...] Read more.
We hypothesized that compounds containing ether linkages within their backbone structures, when exposed to hydroxyl radicals (•OH), can generate ultra-weak photon emission (UPE) as a result of the formation of triplet excited carbonyl species (3R=O*). To evaluate this hypothesis, we investigated the UPE of four compounds, each at a final concentration of 185.2 µmol/L: EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid), a potent chelator of divalent cations, and three crown ethers—12-crown-4, 15-crown-5, and 18-crown-6—containing two, four, five, and six ether bonds, respectively. •OH was generated using a modified Fenton reagent—92.6 µmol/L Fe2+ and 2.6 mmol/L H2O2. The highest UPE was recorded for the Fe2+–EGTA–H2O2 (2863 ± 158 RLU; relative light units), followed by 18-crown-6, 15-crown-5, and 12-crown-4 (1161 ± 78, 615± 86, and 579 ± 109 RLU, respectively; p < 0.05), corresponding to the number of ether groups present. Controls lacking either H2O2 or Fe2+ exhibited no significant light emission compared to the buffer medium. These findings support the hypothesis that ether bonds, when oxidatively attacked by •OH, undergo chemical transformations resulting in the formation of 3R=O* species, the decay of which is associated with UPE. In crown ethers exposed to Fe2+-H2O2, the intensity of UPE was correlated with the number of ether bonds in their structure. Full article
(This article belongs to the Special Issue Molecular Insights into Bioluminescence and Chemiluminescence)
Show Figures

Figure 1

14 pages, 6801 KB  
Article
Effect of Zr Doping on BNT–5BT Lead-Free Ceramics: Substitutional and Excess Incorporation Analysis
by Mauro Difeo, Miriam Castro and Leandro Ramajo
Micro 2025, 5(3), 35; https://doi.org/10.3390/micro5030035 - 28 Jul 2025
Viewed by 231
Abstract
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of [...] Read more.
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of Zr4+ at the Ti4+ site (BNT–5BT–xZrsub), and (ii) the addition of ZrO2 in excess (BNT–5BT–xZrexc). The samples were synthesized via conventional solid-state reaction and characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM/EDS), and electrical measurements, including dielectric, ferroelectric, and piezoelectric responses. Both doping routes were found to influence phase stability and electromechanical performance. Substitutional doping notably reduced the coercive field while preserving high remanent polarization, resulting in an enhanced piezoelectric coefficient (d33). These results highlight the potential of Zr-modified BNT–5BT ceramics for lead-free energy harvesting applications. Full article
Show Figures

Figure 1

15 pages, 2921 KB  
Article
Enhanced Photoelectrochemical Performance of BiVO4 Photoanodes Co-Modified with Borate and NiFeOx
by Siqiang Cheng, Yun Cheng, Taoyun Zhou, Shilin Li, Dong Xie and Xinyu Li
Micromachines 2025, 16(8), 866; https://doi.org/10.3390/mi16080866 - 27 Jul 2025
Viewed by 457
Abstract
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge [...] Read more.
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge transport, sluggish surface kinetics, and photocorrosion. In this study, porous monoclinic BiVO4 films are fabricated via a simplified successive ionic layer adsorption and reaction (SILAR) method, followed by borate treatment and PEC deposition of NiFeOx. The resulting B/BiVO4/NiFeOx photoanode exhibits a significantly enhanced photocurrent density of 2.45 mA cm−2 at 1.23 V vs. RHE—5.3 times higher than pristine BiVO4. It also achieves an ABPE of 0.77% and a charge transfer efficiency of 79.5%. These results demonstrate that dual surface modification via borate and NiFeOx is a cost-effective strategy to improve BiVO4-based PEC water splitting performance. This work provides a promising pathway for the scalable development of efficient and economically viable photoanodes for solar hydrogen production. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

15 pages, 7651 KB  
Article
Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping
by Nanxi Lin, Hong Zhang, Yunye Shi, Chenjun Xu, Zhuoqian Xie and Yunjin Chen
Materials 2025, 18(13), 2953; https://doi.org/10.3390/ma18132953 - 22 Jun 2025
Viewed by 350
Abstract
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure [...] Read more.
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure of BiFeO3 into a cubic phase, thereby reducing the lattice mismatch with silicon to 2.8%. High-quality, highly oriented, silicon-based cubic Sr,Ti:BiFeO3 thin films were successfully fabricated using radio frequency magnetron sputtering. Due to the induced lattice distortion, the characteristic periodic spiral spin antiferromagnetic structure of BiFeO3 was suppressed, resulting in a significant enhancement of the saturation magnetization of cubic Bi0.5Sr0.5Fe0.5Ti0.5O3 (48.0 emu/cm3), compared to that of pristine BiFeO3 (5.0 emu/cm3). Furthermore, the incorporation of Sr2+ and Ti4+ ions eliminated the birefringence effect inherent in trigonal BiFeO3, thereby inducing a pronounced magneto-optical effect in the cubic Sr,Ti:BiFeO3 thin film. The magnetic circular dichroic ellipticity (ψF) of Bi0.5Sr0.5Fe0.5Ti0.5O3 reached an impressive 2300 degrees/cm. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

32 pages, 4701 KB  
Review
Machine-Learning-Guided Design of Nanostructured Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: From Material Discovery to Performance Optimization
by Xiongwei Liang, Shaopeng Yu, Bo Meng, Yongfu Ju, Shuai Wang and Yingning Wang
Nanomaterials 2025, 15(12), 948; https://doi.org/10.3390/nano15120948 - 18 Jun 2025
Cited by 2 | Viewed by 947
Abstract
The rational design of photoanode materials is pivotal for advancing photoelectrochemical (PEC) water splitting toward sustainable hydrogen production. This review highlights recent progress in the machine learning (ML)-assisted development of nanostructured metal oxide photoanodes, focusing on bridging materials discovery and device-level performance optimization. [...] Read more.
The rational design of photoanode materials is pivotal for advancing photoelectrochemical (PEC) water splitting toward sustainable hydrogen production. This review highlights recent progress in the machine learning (ML)-assisted development of nanostructured metal oxide photoanodes, focusing on bridging materials discovery and device-level performance optimization. We first delineate the fundamental physicochemical criteria for efficient photoanodes, including suitable band alignment, visible-light absorption, charge carrier mobility, and electrochemical stability. Conventional strategies such as nanostructuring, elemental doping, and surface/interface engineering are critically evaluated. We then discuss the integration of ML techniques—ranging from high-throughput density functional theory (DFT)-based screening to experimental data-driven modeling—for accelerating the identification of promising oxides (e.g., BiVO4, Fe2O3, WO3) and optimizing key parameters such as dopant selection, morphology, and catalyst interfaces. Particular attention is given to surrogate modeling, Bayesian optimization, convolutional neural networks, and explainable AI approaches that enable closed-loop synthesis-experiment-ML frameworks. ML-assisted performance prediction and tandem device design are also addressed. Finally, current challenges in data standardization, model generalizability, and experimental validation are outlined, and future perspectives are proposed for integrating ML with automated platforms and physics-informed modeling to facilitate scalable PEC material development for clean energy applications. Full article
(This article belongs to the Special Issue Nanomaterials for Novel Photoelectrochemical Devices)
Show Figures

Figure 1

13 pages, 3875 KB  
Article
Enhanced Peroxydisulfate Activation via Fe-Doped BiOBr for Visible-Light Photocatalytic Degradation of Paracetamol
by Zhigang Wang, Mengxi Cheng, Qiong Liu and Rong Chen
Catalysts 2025, 15(6), 594; https://doi.org/10.3390/catal15060594 - 16 Jun 2025
Viewed by 493
Abstract
Fe-doped BiOBr nanomaterials with varying Fe concentrations were synthesized using a solvothermal method. Paracetamol (APAP) was selected as the target pollutant to evaluate the visible-light-driven peroxydisulfate (PDS) activation performance of the prepared catalysts. Among all samples, 5% Fe-doped BiOBr (5% Fe-BOB) exhibited the [...] Read more.
Fe-doped BiOBr nanomaterials with varying Fe concentrations were synthesized using a solvothermal method. Paracetamol (APAP) was selected as the target pollutant to evaluate the visible-light-driven peroxydisulfate (PDS) activation performance of the prepared catalysts. Among all samples, 5% Fe-doped BiOBr (5% Fe-BOB) exhibited the highest catalytic efficiency, which can completely degrade APAP in 30 min under visible light irradiation. The degradation kinetics of APAP, PDS consumption, and the dominant reactive species in the 5% Fe-BOB/PDS/visible light system were systematically investigated. Results revealed that both photocatalyst dosage and PDS concentration significantly influenced activation efficiency. The primary active species responsible for APAP degradation were identified as photogenerated holes (h+) and singlet oxygen (1O2). Furthermore, cycling tests and control experiments confirmed that the 5% Fe-BOB/PDS/visible light system maintained high stability and effectively degraded APAP across a wide pH range. This work provides an efficient and stable photocatalytic system for pharmaceutical wastewater treatment through PDS-based advanced oxidation processes. Full article
Show Figures

Figure 1

20 pages, 4520 KB  
Article
Bandgap Tuning in Cobalt-Doped BiFeO3/Bi25FeO40 Heterostructured Nanopowders via Sol–Gel Phase Engineering
by Dhouha Baghdedi, Asma Dahri, Mohamed Tabellout, Najmeddine Abdelmoula and Zohra Benzarti
Nanomaterials 2025, 15(12), 918; https://doi.org/10.3390/nano15120918 - 12 Jun 2025
Viewed by 514
Abstract
Bismuth ferrite (BiFeO3, BFO) is a promising multiferroic material, but its optoelectronic potential is limited by a wide bandgap and charge recombination. Here, we report the sol–gel synthesis of Co-doped BiFeO3/Bi25FeO40 heterostructured nanopowders (x = 0.07, [...] Read more.
Bismuth ferrite (BiFeO3, BFO) is a promising multiferroic material, but its optoelectronic potential is limited by a wide bandgap and charge recombination. Here, we report the sol–gel synthesis of Co-doped BiFeO3/Bi25FeO40 heterostructured nanopowders (x = 0.07, 0.15) alongside pristine BFO to explore Co doping and phase engineering as strategies to enhance their functional properties. Using X-ray diffraction (XRD) with Rietveld refinement, Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), UV-Vis spectroscopy, and dielectric analysis, we reveal a biphasic structure (rhombohedral R3c and cubic I23 phases) with tuned phase ratios (~73:27 for x = 0.07; ~76:24 for x = 0.15). Co doping induces lattice strain and oxygen vacancies, reducing the bandgap from 1.78 eV in BFO to 1.31 eV in BFO0.15 and boosting visible light absorption. Dielectric measurements show reduced permittivity and altered conduction, driven by [Co2+-V0••] defect dipoles. These synergistic modifications, including phase segregation, defect chemistry, and nanoscale morphology, significantly enhance optoelectronic performance, making these heterostructures compelling for photocatalytic and photovoltaic applications. Full article
Show Figures

Figure 1

11 pages, 1806 KB  
Article
Enhanced Electrical Property and Thermal Stability in Lead-Free BNT–BT–BF Ceramics
by Kangle Zhou, Enxiang Hou, Yanfeng Qu, Yan Mu and Junjun Wang
Ceramics 2025, 8(2), 70; https://doi.org/10.3390/ceramics8020070 - 7 Jun 2025
Viewed by 1068
Abstract
The synergistic combination of outstanding electrical properties and exceptional thermal stability holds significant implications for advancing piezoelectric ceramic applications. In this work, lead-free ((1−x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (x = 0.08, 0.10, 0.12)) ceramics were synthesized using a [...] Read more.
The synergistic combination of outstanding electrical properties and exceptional thermal stability holds significant implications for advancing piezoelectric ceramic applications. In this work, lead-free ((1−x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (x = 0.08, 0.10, 0.12)) ceramics were synthesized using a conventional solid-state method, with systematic investigation of phase evolution, microstructural characteristics, and their coupled effects on electromechanical performance and thermal stability. Rietveld refinement analysis revealed a rhombohedral–tetragonal (R–T) phase coexistence, where the tetragonal phase fraction maximized at x = 0.10. This structural optimization enabled the simultaneous enhancement of piezoelectricity and thermal resilience. The x = 0.10 composition achieved recorded values of d33 = 132 pC/N, g33 = 26.11 × 10−3 Vm/N, and a depolarization temperature Td = 105 °C. These findings establish BiFeO3 doping as a dual-functional strategy for developing high-performance lead-free ceramics. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

15 pages, 7502 KB  
Article
Gd and Zr Co-Doped BiFeO3 Magnetic Nanoparticles for Piezo-Photocatalytic Degradation of Ofloxacin
by Xuan Liu, Jie Chao, Feifei Guo, Liangliang Chang, Xinyang Zhang, Wei Long and Zengzhe Xi
Nanomaterials 2025, 15(11), 792; https://doi.org/10.3390/nano15110792 - 24 May 2025
Viewed by 608
Abstract
Addressing the limitations of poor piezoelectric photocatalytic activity and insufficient magnetic recovery in pure BiFeO3 nanoparticles, Gd and Zr co-doped BiFeO3 nanoparticles were synthesized via the sol-gel method. The structural characterization revealed a rhombohedral-to-orthorhombic phase transition with reduced grain size (~35 [...] Read more.
Addressing the limitations of poor piezoelectric photocatalytic activity and insufficient magnetic recovery in pure BiFeO3 nanoparticles, Gd and Zr co-doped BiFeO3 nanoparticles were synthesized via the sol-gel method. The structural characterization revealed a rhombohedral-to-orthorhombic phase transition with reduced grain size (~35 nm) and lattice distortion due to dopant incorporation. An XPS analysis confirmed Fe3+ dominance and oxygen vacancy enrichment, while optimized BGFZ9 exhibited enhanced remanent magnetization (0.1753 emu/g, 14.14 increase) compared to undoped BFO. The synergistic piezo-photocatalytic system achieved 81.08% Ofloxacin degradation within 120 min (rate constant: 0.0136 min−1, 1.26 higher than BFO) through stress-induced piezoelectric fields that promoted electron transfer for ·O2/·OH radical generation via O2 reduction. The Ofloxacin degradation efficiency decreased to 24.36% after four cycles, with structural integrity confirmed by XRD phase stability. This work demonstrates a triple-optimization mechanism (crystal phase engineering, defect modulation, and magnetic enhancement) for designing magnetically recoverable multiferroic catalysts in pharmaceutical wastewater treatment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

15 pages, 5437 KB  
Article
Evaluation of Physical Properties of Ti-Doped BiFeO3 Thin Films Deposited on Fluorine Tin Oxide and Indium Tin Oxide Substrates
by Anel Rocío Carrasco-Hernández, Armando Reyes-Rojas, Gabriel Rojas-George, Antonio Ramírez-De la Cruz and Hilda Esperanza Esparza-Ponce
Materials 2025, 18(10), 2395; https://doi.org/10.3390/ma18102395 - 21 May 2025
Cited by 1 | Viewed by 565
Abstract
BiFeO3 is a fascinating material with a rhombohedral crystal structure (R3c) at room temperature. This unique structure makes it suitable for use in solar cells, as the interaction of light with the polarized octahedral enhances electron movement. Evaluating its properties [...] Read more.
BiFeO3 is a fascinating material with a rhombohedral crystal structure (R3c) at room temperature. This unique structure makes it suitable for use in solar cells, as the interaction of light with the polarized octahedral enhances electron movement. Evaluating its properties on different substrates helps to identify the specific characteristics of thin films. The thin films presented in this work were deposited using reactive RF cathodic sputtering with a homemade 1-inch diameter ceramic target. Their morphology, phase composition, optical, piezoelectric, and ferroelectric properties were evaluated. Fluorine Tin Oxide (FTO) and Indium Tin Oxide (ITO) substrates were used for the presented thin films. The thin films deposited on FTO displayed the “butterfly” behavior typically associated with ferroelectric materials. A d33 value of 2.71 nm/V was determined using SSPFM-DART mode. In contrast, the thin films deposited on ITO at 550 °C reached a maximum saturation polarization of 40.89 μC/cm2 and a remnant polarization of 44.87 μC/cm2, which are the highest values recorded, but did not present the typical “butterfly” behavior. As the grain size increased, the influence of charge defects became more pronounced, leading to an increase in the leakage current. Furthermore, the presence of secondary phases also contributed to this behavior. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Graphical abstract

13 pages, 2521 KB  
Article
Determination of Caffeine in Energy Drinks Using a Composite Modified Sensor Based on Magnetic Nanoparticles
by Katarzyna Tyszczuk-Rotko, Aleksandra Liwak and Aleksy Keller
Molecules 2025, 30(10), 2219; https://doi.org/10.3390/molecules30102219 - 20 May 2025
Viewed by 525
Abstract
A new voltammetric sensor (BDDE/Nafion@Fe3O4/BiF) was fabricated by applying a nanocomposite drop of Fe3O4 magnetic nanoparticles in Nafion onto the polished boron-doped diamond electrode (BDDE) surface. Then, after drying (5 min at room temperature), the electrode [...] Read more.
A new voltammetric sensor (BDDE/Nafion@Fe3O4/BiF) was fabricated by applying a nanocomposite drop of Fe3O4 magnetic nanoparticles in Nafion onto the polished boron-doped diamond electrode (BDDE) surface. Then, after drying (5 min at room temperature), the electrode was electrochemically modified with bismuth film (BiF) during in situ analysis. The Nafion@Fe3O4/BiF modification of the BDDE contributes to the acquisition of the highest differential-pulse adsorptive stripping voltammetric (DPAdSV) signals of caffeine (CAF) due to the improvement of electron transfer and the increase in the number of active sites on which CAF can be adsorbed. The DPAdSV signals exhibited a linearly varied oxidation peak with the CAF concentration range between 0.5 and 10,000 nM, leading to the 0.043 and 0.14 nM detection and quantification limits, respectively. The practical applicability of the DPAdSV procedure using the BDDE/Nafion@Fe3O4/BiF was positively confirmed with commercially available energy drinks. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

Back to TopTop