New Material Exploration to Enhance Neutron Intensity below Cold Neutrons: Nanosized Graphene Flower Aggregation
Abstract
:1. Introduction
2. Nanosized Graphene Flower Aggregation
3. Experiment
3.1. Neutron Transmission
3.2. Small-Angle Neutron Scattering (SANS) Experiment
4. Results and Discussions
4.1. Neutron Transmission
4.2. SANS
4.2.1. SANS Results
4.2.2. Invariant Q for SANS Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nesvizhevsky, V.V. Interaction of neutrons with nanoparticles. Phys. At. Nucl. 2002, 65, 400–408. [Google Scholar] [CrossRef]
- Nesvizhevsky, V.V.; Lychagin, E.V.; Muzychka, A.Y.; Strelkov, A.V.; Pignol, G.; Protasov, K.V. The reflection of very cold neutrons from diamond powder nanoparticles. Nucl. Instrum. Methods A 2008, 595, 632–636. [Google Scholar] [CrossRef] [Green Version]
- Lychagin, E.V.; Muzychka, A.Y.; Nesvizhevsky, V.V.; Nekhaev, G.V.; Pignol, G.; Protasov, K.V.; Strelkov, A.V. Coherent scattering of slow neutrons at nanoparticles in particle physics experiments. Nucl. Instrum. Methods A 2009, 611, 302–305. [Google Scholar] [CrossRef]
- Cubitt, R.; Lychagin, E.V.; Muzychka, A.Y.; Nekhaev, G.V.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Strelkov, A.V. Quasi-specular reflection of cold neutrons from nano-dispersed media at above-critical angles. Nucl. Instrum. Methods A 2010, 622, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Lychagin, E.V.; Muzychka, A.Y. Nano-structured reflectors for slow neutrons. New Dev. Low-Energy Phys. Res. 2013, 2013, 1–12. [Google Scholar]
- Ignatovich, V.K.; Nesvizhevsky, V.V. Reflection of Slow Neutrons from Nanorod Powder. At. Energy 2014, 116, 132–143. [Google Scholar] [CrossRef]
- Artem’ev, V.A.; Nezvanov, A.Y.; Nesvizhevsky, V.V. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media. Crystallogr. Rep. 2016, 61, 84–88. [Google Scholar] [CrossRef]
- Teshigawara, M.; Tsuchikawa, Y.; Ichikawa, G.; Takata, S.; Mishima, K.; Harada, M.; Ooi, M.; Kawamura, Y.; Kai, T.; Ohira-Kawamura, S.; et al. Measurement of neutron scattering cross section of nano-diamond with particle diameter of approximately 5 nm in energy range of 0.2 meV to 100 meV. Nucl. Instrum. Methods A 2019, 929, 113–120. [Google Scholar] [CrossRef]
- Ersez, T.; Osborn, J.C.; Lu, W.; Mata, J.P. Small angle and inelastic scattering investigation of nanodiamonds. Phys. B Condens. Matter. 2018, 551, 278–282. [Google Scholar] [CrossRef]
- Jamalipour, M.; Zanini, L.; Klinkby, E.B.; Gorini, G.; Willendrup, P.K. Improved beam extraction at compact neutron sources using diamonds nanoparticles and supermirrors. Nucl. Instrum. Methods A 2022, 1033, 166719. [Google Scholar] [CrossRef]
- Granada, J.R.; Damian, J.I.M.; Helman, C. Studies on Reflector Materials for Cold Neutrons. EPJ Web Conf. 2020, 231, 04002. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Cao, K.; Feng, S.; Han, Y.; Gao, L.; Ly, T.H.; Xu, Z.; Lu, Y. Elastic straining of free-standing monolayer graphene. Nat. Commun. 2020, 11, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou1, L.; Wang, L.; Wu, Y.; Ma, C.; Yu, S.; Liu, X. Trends Analysis of Graphene Research and Development. J. Data Inf. Sci. 2018, 3, 82–100. [Google Scholar] [CrossRef] [Green Version]
- Otake, Y.; Uesaka, M.; Kobayashi, H. Compact Neutron Sources for Energy and Security, Reviews of Accelerator-Science and Technology. Accel. Appl. Energy Secur. 2015, 8, 181–207. [Google Scholar] [CrossRef]
- Noda, Y.; Izunome, H.; Maeda, T.; Inada, T.; Ueda, S.; Koizumi, S. The Large-Area Detector for Small-Angle Neutron Scattering on iMATERIA at J-PARC. Quantum Beam Sci. 2020, 4, 32. [Google Scholar] [CrossRef]
- Koizumi, S.; Noda, Y.; Maeda, T.; Inada, T.; Ueda, S.; Fujisawa, T.; Izunome, H.; Robinson, R.A.; Frielinghaus, H. Advanced Small-Angle Scattering Instrument Available in the Tokyo Area. Time-Of-Flight, Small-Angle Neutron Scattering Developed on the iMATERIA Diffractometer at the High Intensity Pulsed Neutron Source J-PARC. Quantum Beam Sci. 2020, 4, 42. [Google Scholar] [CrossRef]
- Ikeda, Y. J-PARC status update. Nucl. Instrum. Methods A 2009, 600, 1–4. [Google Scholar] [CrossRef]
- Ikeda, Y.; Teshigawara, M.; Yan, M.F.; Iwamoto, C.; Fujita, K.; Abe, Y.; Wakabayashi, Y.; Taketani, A.; Takanashi, T.; Harada, M.; et al. Experimental validation of cold neutron source performance with mesitylene moderator installed at RANS. J. Neutron Res. 2022, 1, 1–11. [Google Scholar] [CrossRef]
- Granada, J.R.; Santisteban, J.R.; Dawidowski, J.; Mayer, R.E. Neutron transmission: A powerful technique for small accelerator-based neutron sources. Phys. Procedia 2012, 26, 108–116. [Google Scholar] [CrossRef]
- Muramatsu, K.; Toyoda, M. Carbon material and method for producing same. U.S. Patent 8951451B2, 25 May 2010. [Google Scholar]
- Muramatsu, K.; Sutani, K.; Toyoda, M. GRAPHENE FLOWER Properties and Potential for GRAPHENE FLOWER Films and Dispersions. Convert. E-Print 2012, 2, 84–89. [Google Scholar]
- Uno, S.; Uchida, T.; Sekimoto, M.; Murakami, T.; Miyama, K.; Shoji, M.; Nakano, E.; Koike, T.; Morita, K.; Satoh, H.; et al. Two-dimensional Neutron Detector with GEM and its Applications. Phys. Procedia 2012, 26, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, S.; Noda, Y. A Variety of Small-angle Neutron Scattering Instruments Available in Tokyo Area, Japan—Complimentary Use of Accelerator and Reactor. JPS Conf. Proc. 2019, 2019, 011004. [Google Scholar] [CrossRef] [Green Version]
- Glatter, O.; Kratky, O. Small Angle X-ray Scattering; Academic Press: London, UK; New York, NY, USA, 1982. [Google Scholar]
- Porod, G. X-ray low angle scattering of dense colloid systems part I. Kolloid-Z 1951, 124, 83–114. [Google Scholar] [CrossRef]
Sample | Graphene 1 | Graphene 2 | Graphite | Nanodiamond |
---|---|---|---|---|
Shape | ϕ20 mm Disk | 10 × 10 mm Plate | ||
Thickness (mm) | 2.6 | 3.2 | 1.9 | 1.2 |
Bulk density (g/cm3) | 1.09 | 0.91 | 1.77 | 0.65 |
Sample | Graphene 1 | Graphene 2 | Graphite | Nanodiamond |
---|---|---|---|---|
Invariant Q | 0.0213 | 0.0114 | 0.0081 | 0.0164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teshigawara, M.; Ikeda, Y.; Yan, M.; Muramatsu, K.; Sutani, K.; Fukuzumi, M.; Noda, Y.; Koizumi, S.; Saruta, K.; Otake, Y. New Material Exploration to Enhance Neutron Intensity below Cold Neutrons: Nanosized Graphene Flower Aggregation. Nanomaterials 2023, 13, 76. https://doi.org/10.3390/nano13010076
Teshigawara M, Ikeda Y, Yan M, Muramatsu K, Sutani K, Fukuzumi M, Noda Y, Koizumi S, Saruta K, Otake Y. New Material Exploration to Enhance Neutron Intensity below Cold Neutrons: Nanosized Graphene Flower Aggregation. Nanomaterials. 2023; 13(1):76. https://doi.org/10.3390/nano13010076
Chicago/Turabian StyleTeshigawara, Makoto, Yujiro Ikeda, Mingfei Yan, Kazuo Muramatsu, Koichi Sutani, Masafumi Fukuzumi, Yohei Noda, Satoshi Koizumi, Koichi Saruta, and Yoshie Otake. 2023. "New Material Exploration to Enhance Neutron Intensity below Cold Neutrons: Nanosized Graphene Flower Aggregation" Nanomaterials 13, no. 1: 76. https://doi.org/10.3390/nano13010076
APA StyleTeshigawara, M., Ikeda, Y., Yan, M., Muramatsu, K., Sutani, K., Fukuzumi, M., Noda, Y., Koizumi, S., Saruta, K., & Otake, Y. (2023). New Material Exploration to Enhance Neutron Intensity below Cold Neutrons: Nanosized Graphene Flower Aggregation. Nanomaterials, 13(1), 76. https://doi.org/10.3390/nano13010076